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1. Introduction

There has been a long history of studying special classes of surfaces, as surfaces with particularly
interesting properties, in Euclidean Geometry, e.g., ruled surfaces, translation surfaces, surfaces
of revolution, sphere, helicoidal surfaces etc.

In this paper, we mainly study the translation surfaces in the Pseudo-Galilean space under
the condition Ar; = A;r;.
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In [4], Chen give this definition, whenever the position vector r of S in E” can be decomposed
as a finite sum of E”-valued non-constant eigenfunctions of Al, we say that S is a finite type.
In other words, S is said to be of k-type if the position vector r of S in E” can be written in the

following form:

r=ro+ i ri,
where rg is a clonstant vector, and r; (i =1,2,...,n) are non-constant E”-valued functions on S.
In [2], Bekkar and Zoubir classified the surfaces of revolution with non-zero Gaussian
curvature K¢ in the three-dimensional Lorentz-Minkowski space E3, under the condition
Ar;=A;r;, A eR.
In [[7] Kaimakamis and Papantoniou investigated the surfaces of revolution without parabolic
points in [E? satisfying
Ally = Ar, AeMat(3,R),
where Mat(3,R) is the set of 3 x 3 real matrices.
In [12], Yoon obtained some classification of translation surfaces in Galilean 3-space which
satisfy the condition
Ar;=MAri, A ER,(@=1,2,3).
In [1], Baba-Hamed and Bekkar studied the helicoidal surfaces without parabolic points in
[E‘{i, which satisfy the condition:
AMri =i, (0=1,2,3).
In [8], Senoussi and Bekkar classified the helicoidal surfaces in [E? under the condition:

Alr=Ar, AeMat(3,R).

2. Basic Notions and Properties

The Pseudo-Galilean space G% is a Cayley-Klein space with absolute figure consisting of the
ordered triple {w, f,I} where w is the ideal (absolute) plane in the real 3-dimensional projective
space, [ is a line in w and I is the fixed hyperbolic involution of points of f.

The Pseudo-Galilean scalar product is defined by:

<X,Y>:{uu,’, / ?fu;éOru’;é,O,
vv'—ww', ifu=0andu' =0.

where X = (u,v,w) and Y = (u/,v',w’).

Now, we can write the Pseudo-Galilean norm of the vector X = (u,v,w) as follows:

u, ifu#0,
Xl =
11 { [v2 —w?|, ifu=0.

A vector X = (u,v,w) of G% is called non-isotropic if u # 0. X called unit non-isotropic
vector if X =(1,u,w). For isotropic vectors u = 0 holds. There are 4 types of isotropic vectors:
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spacelike (v2 —w? > 0), timelike (v? — w? < 0) and 2 types of lightlike (v = w), (v = —w) vectors.
A non-lightlike isotropic vector is a unit vector if v2 —w? = +1.
We introduce a pseudo-Galilean cross-product of X and Y on Gé in the following manner:

0 —eg e3
XxY=|lu v w|,
u vow

where eg =(0,1,0), e3 =(0,0,1) are the standard basis vectors in Gé.
Let S be a regular surface in G% parametrized by

X(u1,u2) = (x(u1,ug),y(u,ug),z2(u,ug)).

We denote

Ox oy 0z 19
X, = —— = — 2= — 1=
,L 0ui’ y,l aui’ s 0ui7 &y

then a surface S is admissible if and only if x ; # 0, for some i = 1,2.
Let S be an admissible surface in Pseudo-Galilean space G%. The unit normal vector field of
S is
1
N(ui,ug)= W(O,x,ﬂ,z —X22,1,%X1Y2~X2Y,1),

where

W= \/I(x,12,2 —x221)%—(x1y2— %212
We notice that the normal vector field satisfies (N,N) = ¢ = +1, therefore we have two basic

types of admissible surfaces, spacelike surfaces (¢ = —1) and timelike surfaces (¢ = +1).
The first fundamental form of a surface S in G% is defined by

d82 = (x,ldul + x,2du2)2 + 6(X,1du1 +X"2du2),

where
{0, if direction du 1 : dug is non-isotropic,

1, ifdirection duq:dus is isotropic.

and X 0= g—uXi, 1 =1,2, by ~ above a vector, the projection of a vector on the pseudo-Euclidean yz

plane is denoted.
The coefficients of the first fundamental form are introduced as

gi=x;, hij=X;, X)), i,j=12.
We can write the first fundamental form as
ds® = (g1duy + godug)® + 8(h11du? + 2h1eduidus + haadu?).
Now, the function W2 can be written as
W2 =—e(g1X 2~ 82X 1)? = —e(gTho2 — 2g182h12 + g5h11) > 0.
The coefficients L;; of the second fundamental form are introduced as

w2 -
L;;= <—5_2(g1X,i,j_gi,jX,1),N>a if g1#0,
1
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or

w2 - ,
Lij = <_5?(g2Xi,j —gyi’jX’Q),N> y if g2 75 0,
2

where 1,7 =1,2.

The Gaussian curvature K and the mean curvature H of S are defined by

L11Lgo— L%,
_8—’
w2

E
H= —W(ggLu —2g182L12+ g7 L22).

More about surfaces in Gé can be found in [10], [5] and [9]].

It is common knowledge that in terms of local coordinates {u1,u2} of S. The Laplacian
operator with respect to the second fundamental form on S, A is defined by
NI (\/.,?Lifi) (1)
VL 721 0u ouj)’

where L;; (i,j = 1,2) are the components of the second fundamental form II on S, and (LY)

(resp. .Z) the inverse matrix (resp. the determinant of the matrix (L;;)).

Definition 2.1. A surface in the 3-dimensional Pseudo-Galilean space is said to be II-Harmonic
if it satisfies the condition A'r; = 0, where r; are the components of the position vector field r.

3. Translation Surfaces in Pseudo-Galilean Space G;

The following is devoted to the classification of a non II-Harmonic translation surfaces with

non-degenerate second fundamental form in Pseudo-Galilean space Gé satisfying:
AMri=Airi, Ai€R, (i=1,2,3), 2)

where Al is the Laplacian operator with respect to the second fundamental form on S in Gé.

Let S a translation surface in Gé that is obtained by translating two planar generating
curves, that is a non-isotropic curve a(u) = (u,0,¢(u)) in plane y = 0 and an isotropic curve
B()=(0,v,w(v)) in plane x = 0. Then, it is parametrized by:

S :r(u,v) = u,v, o)+ y)), 3

where ¢(u) and w(v) are smooth functions.
By the local coordinate system {u,v}, a simple calculation implies that

g1=1,82=0, hi1=—¢” h1a=—¢'y/, hag=1-y"%;
—E(p” _gw//

L15=0, Log = ,
W s 4412 22 "%

where we put W2 = —g(1 - y'2).

L=

The Gaussian curvature K is given by
—e@"v"
:%, 'l//,(v);éE,VUEQCR.
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Suppose that the surface has non zero Gaussian curvature, so
o"v"#0, Yu,veQcR.

The Laplacian operator Al of S can be expressed as:

1 62 " 0 1 62 " 0
AH:EW —”_2_('0_2_4__"_2_1//_2_ . (4)
@' ous 2¢"=0u y"ovs 2y’ ov

Using (@) and (4), we get:

AII S _EW([)W
202
- —8‘({;1[/”,
LA v = —W, (5)
EW(pm ng/H
AT (@ +y)=2eW - G ¢ - oW v

As the surface S has no parabolic points we must have ¢"y" # 0.
Combining (2) and (5) we get the following equations:

—eW¢"

2(p—”2 =Mu, (6)

—eWy"

21//—,,2 = Agv, (7)
EW(p/// EWI[JW

2eW — 22 ¢ - W v =As(p+w). (8)

Substituting (6) and (7) into (8) implies that

AMug' = A3¢ = Ay — Agvy’ — 26/ —e(1 —y'2). 9)

We will presently discuss eight cases according to constants A; (i =1,2,3).

Case 1: /11:/12:A3:0

Case 5: 11 20, A9 =1A3=0

Case 2: /11:/1320,/12750

Case 6: /1112 # 0, 13 =0

Case3: 11=12=0,A3#0

Case 7: 1{A3#0,A9=0

Case 4: 11 =0, A1oA3#0

Case 8: /1112/13 # 0

From the above, we will examine two parts one of them spacelike surfaces and other timelike
surfaces.

Part 1: In this part, we suppose that S is spacelike surface i.e. (¢ = —-1).

We have
/11u(p'—/13(pzitgw—)tng'+2\/l—w’z. (10)

In the Cases 1, 3, 4 and 5, we can easily prove that there are no non II-Harmonic translation
surfaces with non-degenerate second fundamental form satisfying (2).
We will study the Cases 2, 6, 7 and 8.

Case 2. Let A1 =0, A9 #0, A3 =0, we obtain

—Agvy' +2¢/1-y"2 =0, (11)
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we get
12 _ 4
/lgv2 +4’

this differential equation admits the solution

w(v):i%ln‘\//lgv2+4+ﬂtgv‘+c, ceR.

Here, the function ¢(u) is independent of the function y(v).
In this case,the translation surfaces S are given by

2
r(u,v) = (u,v,(p(u)i A—Zln‘\//lgv2+4+)tgv‘ +c), ceR.
where ¢" # 0.
Case 6. Let 1119 #0, A3 =0, we obtain

/11u(p' = —/120W’+2\/ 1 —'W’Z

where u and v are independent variables. So, we can write

Mug' =—Agvy' +24/1-y2 =k,

where £k € R.
For the function ¢(u), we get

k
ow)=—Inlul+c1, c1€R,
MM
and for the function y(v), we get
Aokv \//1§U2—k2+4
+2 .
A2v2 +4 AZv? +4

The function ¥(v) is given by

Y'(v)=-

(12)

(13)

(14)

(15)

k B |2\/A02—k2+4-kAv| o
y(©) = ——In(AZv® +4)F —In +—1In|\/A30% k2 + 4+ Ago| + ca.
2

222 A2 19\ [A202 — 2+ 4+ kAgw
In particular, if £ =0, then we have

2
_ _ /12
ou)=cy, w(v)—J_r—/12 ln‘ /12v2+4+lgv)+cz

so, kB #0.
In this case, the translation surfaces S are given by

E E 2\//1§v2—k2+4—k/1211
r(u,v) = (u,v, —Injul- —In(A3v* +4)F —1In

Ao, 7P PN P I
\/A2v% — k2 +4+ Ao +c),

+21
+—1In
Ao

where ceR and £ #0.
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Case 7. Let 1113 #0, 13 =0, we obtain

/11u(p,—/13(p=k=/131V+2\/1—1V'2. (18)

We have
/llu(p'—/l3<p:k. (19)
A calculation gives
A 3k
<P(u)=/l—201u*1 e c1€R", (20)

where A3 # 11.
The equation yields
1//H B /l3

—r == 21
\ /1_w/2 92’ (21)
the function w(v) is given by
(0)= “2si (A?’ + )+k €R (22)
v)=—sin|—v+c —, cC .
VO T Ty @
In this case, the translation surfaces S are given by
()( 11—?2'(A3+)) eR
r(u,v)=|u,v,—ciu™ — —sin|—v+ca||, ci,c ,
s 1 1 9 2 1,C2
where A3 # 11.
Case 8. Let 111913 # 0, we obtain
AMug' —A3¢ = A3y — vy’ +2¢/1-y'2 = k. (23)
A calculation implies that
(w) Mok eR* (24)
u)=—ciuh ——, ¢ .
4 3 1 3 1

For the function ¥(v), we have

Ay = Aoy’ —24/1—y'2 + k. (25)

Differentiating this equation with respect to v we obtain
zw/w//

(/13 —/12)’(//,—/1201”,, = , (26)
/1_w/2
o If Ay = A3 = u, thus becomes
_zw’
Uv = ——, (27)
/1_1;”/2
which give w(v) = —i\/uzvz +4+ %.
o If Ay # A3, putting v/ = ‘;—f =t, we get
dv 2t
Ag—Ag)t— — dgv = . 28
(A3 —A2) 7 v — (28)
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The general solution of this equation is given by
A A
2t/13*212 tﬁzgﬂs
dt.
A3—A2J V1—¢2
So, y(t) is given by
Ao 2 k
w(t)= —=vt——V1-t2+—. (30)
A3 A3 A3

Combining the equation and we have

v(t) = (29)

Ao
2A9 M3 the 3 9 k
B)=—"—"t"12 dt——V1-t2+—.
Y s - 2) Vi s 13
Remark 3.1.
A 224 9g—As . 4Ag—31
e=E o (A= Ag)tT s oF (1/2, 21y 2> 215 25 tz) N R
= ¢, ¢ ’
V1-1t? 209 — A3

where oF' (1/2, 22/{2 2__2’1/133 ; gg:gﬁ ; t2) is the hypergeometric function (see [|6]).

Thus, the translation surfaces S in this case are given by

A + 1
r(u,v)= (u,v,—lcuh ——\/y2v2+4), ceRand peR",
7

U
where =12 = A3 and A1 # u, pA1 #0, or

Ao
A s 24 u_ ot 2
r(u,v) = (u,v(t),—lcuﬂl 2 T dt——V1- t2) ,

+ t
A3 A3(A3 —A2) V1—¢2 A3
where c € R and A1 # A3, Ag # 3.

Part 2: In this part, we suppose that S is timelike surface i.e. (¢ =1).

We have
/11u(p,—/13(p:ﬂgw—ﬂng,—2\/wlz—l. (31)

By using the same methods as in Part 1, we obtain:
In Cases 1, 3, 4, 5 and 6, we can easily prove that there are no non II-Harmonic translation
surfaces with non-degenerate second fundamental form satisfying (2).

We will study only the Cases 2, 7 and 8.
Case 2. Let 11 =0, A9 #0, 13 =0, we obtain

Aoy’ +2¢/y2-1=0, (32)

we get
4
12
=, (33)
4- /1§U2

this differential equation admits the solution

(v) 2 i (sz) + eR

v)=—-—arcsin|—|+c¢, ceR.
v A9 2
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So, the translation surfaces S in this case are given by

2 A
r(u,v)=|u,v (p(u)——arcsm( 2v)+c), ceR,
A9 2

where ¢" # 0.
Case 7. Let 1113 #0, 19 =0, we obtain

ﬂlu(p/—/13(p=k:/l31//—2\/1//'2—1,

we get
A1 A3
=Zcqut - —, c1eRY,
p(u) /1301u s c1
where A3 # A1, and for the function y(v), we get
wl! B /13
1'012 -1 - 2’

this equation give

2 A3 k
w(v)——s1nh(?v+c) /13 celR.

A3
Thus, the translation surfaces S in this case are given by
M A3 A3 )
r(u,v)=|u,v,—ciu™ + —sinh|—v+co||, c1,c0€R,
(u,v) ( 25 s ( 2 2 1,C2

where A3 # 11.
Case 8. Let 111913 # 0, we obtain

Alu(p,—/13(p=k = /131#—/1201//,—2\/1#'2— 1.

For the function ¢(u), we have the solution
A3
eyt - =, ceR*
o(u) s cu 1’ c .

where 11 # A3.
By using the similar method of (Case 8 of Part 1), we obtain

o If Ao = A3 =, we get

1
y() = —p\/p202—4+§.

o If Ao # A3, we get

A3

219 ths 12 tﬂz 13
)= dt+—\/ -1+
Y= 1) VEo1

Thus, the translation surfaces S in thls case are given by

A x 1
r(u,v):(u,v,—lcuﬂl ——\/u2v2+4), ceR and peR",
U

U

where =12 =13, 11 # u, or

Ay

A 2 219 M3 [ the s
r(u,v)=|u,v(t),—cu’ + ——=——¢13-12 d ——\/ -
( A3 A3(A3 = Ag) NI A3 )

where c € R, A1 # A3, Ao # A3.
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In light of the above results, we will introduce the following theorem:

Theorem 3.1. Let S be a non II-Harmonic translation surface with non-degenerate second
fundamental form given by (3) in Gé. If the surface S satisfies the condition AUr; = A;jr, where
A €R, (i =1,2,3), then it is congruent to open part of the surfaces.

A A3 . (A3
1. r(u,v)=|u,v,—ciu™t —%sm —v+cy
A3 3 2

, €1, €ER, where /13 # Al, /11/13 #0;

2 Ao
2. r(u,v)=|u,v,p(u) - A—arcsm( zv) +c), c €R, where A #0, ¢" #0;
2

A 3 2
3. r(u,v)=|u,v, Alcluﬂl + A—smh(—v + 02)), c1,¢2 €ER, where A3 # A1 and A1A3 #0;
3 3
A e 1
4. r(u,v)= u,v,—lcu’tl - =/ p2v? +4), ceRand peR*, where p= Ay = A3, A1 # pand pdi #0;
K u

A 21
5. r(u,v) = u,v,—lcuﬂl ——\/,u2v2—4), ceRand peR* where u=2A2=A3# A1 and A pu#0;
p 7

6. r(u,v) = (u,v,(p(u)i%ln)\/ﬂtgv2+4+/hv‘ +c), c e R where ¢" #0, Ay #0;

24/A2v2-k2+4-kAgv

k k k
7. r(u,v):( lnlul——ln(A2v2+4)+/1

"M 21 2/ AZv2-k2+4+kAz0
i/l—ln‘\//lzlﬂ—k2+4+/12v‘ +c), c€eR,
A M 2A9 13 2
8. r(u,v) =|u,v(t), —cu* 1+ ——= ¢l 1y A t dt —V1-¢#2|, ceR,
( A3 A3(Ag = Ag) f A3
B2 5
where v(t) = 2252 [E2=-dt and A1 # A3, A2 # A3, MA2ds #0,

/11 /1_3 2//‘/2 t)12 /13 2
9. = £), —=cuh +—t*3 (2B g 20| ceR,
) (”’U( "2 - ’

A2 A2

where v(t) = 22 [ L2 2 dt and Ay # Ag, A # A3, Mdahs #0.

4. Conclusion
In a three-dimensional Pseudo-Galilean space G, the translation surfaces S which are non
II-Harmonic, with non-degenerate second fundamental form and given by the parametrisation
(3). If these surfaces satisfy the condition (2)), they are congruent to open part of one of the
surfaces given in Theorem
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