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1. Introduction
In recent years, fractional calculus has found countless applications in different branches of
engineering and science such as Fractional Differential Equations (FDE), fluid flow, electrical
network, mathematical physics, biology, image and signal processing, visco-elasticity and control
[3,4,8,15,22–24,27].

There are some common methods that are used to obtain approximate or analytical
solutions of fractional partial differential equations in literature. Adomian Decomposition
Method (ADM), Laplace Analysis Method (LAM), Homotopy Analysis Method (HAM), Homotopy
Perturbation Method (HPM), Differential Transformation Method (DTM) and Perturbation-
Iteration Algorithm (PIA) are among them [1,2,6,11,13,14,16–21,25,26,28,29].
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The Helmholtz equation in two dimensional case was suggested as follows:

Dα
x u+Dα

y u+wαu = f (x, y), (1.1)

with the initial conditions

u(0, y)=µ1(y), ux(0, y)=µ2(y), (1.2)

where f (x, y) is the known source function and 1<α≤ 2. While coupled Helmholtz equations in
two dimensional case was introduced as follows:

D2α
x u+Dα

2yv+w2α
1 u = f1(x, y), (1.3)

D2α
x v+Dα

2yu+w2α
2 v = f2(x, y), (1.4)

with the initial conditions

u(0, y)=µ1(y), Dα
x u(0, y)=µ2(y), (1.5)

v(0, y)= ν1(y), Dα
x v(0, y)= ν2(y), (1.6)

where f1(x, y), f2(x, y) are the known source functions and 0 < α ≤ 1. In this article, a new
technique, namely, Residual Power Series Method (RPSM), is used to obtain approximate
solution of time-fractional Helmholtz equation. In this method, the coefficients of the power
series are calculated by means of the concept of residual error with the help of one or more
variable algebraic equation chains, and finally, in practice, a so-called truncated series solution
is obtained.

The main advantage of this method over other methods is that it can be applied directly to the
problem without linearization, perturbation or discretization and without any transformation
by selecting appropriate initial conditions.

2. Preliminaries
The fundamentals for fractional calculus theory are given [23].

Definition 1. The Riemann-Liouville fractional integral of order α (α≥ 0) is given as

Jα f (x)= 1
Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, α> 0, x > 0, (2.1)

J0 f (x)= f (x). (2.2)

Definition 2. The Caputo fractional derivative with order α is given as

Dα f (x)= Jm−αDm f (x)=
∫ x

0
(x− t)m−α−1 dm

dtm f (t)dt, m−1<α< m, x > 0 , (2.3)

where Dm is the classic differential operator with order m.

Definition 3. The Caputo’s time-fractional derivative of order α of u(x, t) is defined as

Dα
t u(x, t)=


1

Γ(m−α)

∫ t

0
(t−ξ)m−α−1∂

mu(x,ξ)
∂tm dξ, m−1<α< m,

∂mu(x, t)
∂tm , α= m ∈ N.

(2.4)

Communications in Mathematics and Applications, Vol. 11, No. 4, pp. 575–586, 2020



Approximate Solution of Time-Fractional Helmholtz and Coupled Helmholtz. . . : M. A. Bayrak and S. Tetik 577

Definition 4. A power series expansion of the form
∞∑

m=0
cm(t− t0)mα = c0 + c1(t− t0)α+ c2(t− t0)2α+ . . . , 0≤ m−1<α≤ m, t ≥ t0 (2.5)

is called fractional power series about t = t0 [1].
The power series expansions about t = t0

∞∑
k=0

m−1∑
l=0

fk(x)(t− t0)kα+l , 0≤ m−1<α≤ m, t ≥ t0 (2.6)

are called multiple fractional power series, where fk(x) is called the coefficients of the series.

Definition 5. The two parameter Mittag-Leffler function Eα,β(z) is defined by [19]

Eα,β(z)=
∞∑

k=0

zk

Γ(kα+β)
, z ∈ C. (2.7)

The Mittag-Leffler function Eα,β(z) generalizes the exponential function ez in that E1,1(z)= ez .
It is an entire function in z with order 1

α
and type one.

3. Basic Idea of RPSM
To give the approximate solution of nonlinear fractional order differential equations by means
of the RPSM [1,5,7,9,10], we consider a general nonlinear fractional differential equation:

Dαu = N(u)+R(u), (3.1)

where N(u) is nonlinear term and R(u) is a linear term. Subject to the initial condition

u(x,0)= f (x). (3.2)

The RPSM proposes the solution for (3.1) as a fractional power series about the initial point
y= 0

u(x, y)=
∞∑

n=0
fn(x)

ynα

Γ(1+nα)
, 0<α≤ 1, −∞< x <∞, 0≤ y< R. (3.3)

Next, we let uk(x, y) denote the kth truncated series of u(x, y) as follows:

uk(x, y)=
k∑

n=0
fn(x)

ynα

Γ(1+nα)
. (3.4)

The 0th RPS approximate solution of u(x, y) is used in the following form

u0(x, y)= u(x,0)= f (x). (3.5)

Equation (3.4) can be written as

uk(x, y)= f (x)+
k∑

n=1
fn(x)

ynα

Γ(1+nα)
, k = 1,2,3, . . . . (3.6)

We define the residual function for (3.1)

Resu(x, y)= Dα
y u−N(u)−R(u). (3.7)

Therefore, the kth residual function Resu,k is

Resuk (x, y)= Dα
y uk −N(uk)−R(uk). (3.8)

Communications in Mathematics and Applications, Vol. 11, No. 4, pp. 575–586, 2020



578 Approximate Solution of Time-Fractional Helmholtz and Coupled Helmholtz. . . : M. A. Bayrak and S. Tetik

As in [1, 23], Resu,k = 0 and lim
k→∞

Resk(x, y) = Res(x, y). Therefore, Dnα
y Res(x, y) = 0 since the

fractional derivative of a constant in the Caputo sense is zero and the fractional derivatives Dnα
y

of Res(x, y) and Resk(x, y) are matching at y = 0 for each n = 0,1,2, . . .; that is, Dnα
y Res(x,0) =

Dnα
y Res(xk,0)= 0, n = 0,1,2, . . ..

To determine f1(x), f2(x), f3(x), . . . we consider k = 1,2,3, . . . in (3.6) and substitute it into (3.8),
applying the fractional derivative D(k−1)α

y in both sides k = 1,2,3, . . . and finally we solve in the
following form:

D(k−1)α
y Resuk (x,0)= 0, k = 1,2,3, . . . . (3.9)

In the case of unknown exact solution, for the accuracy and comparison purposes of RPSM,
absolute and relative errors are respectively given as follows:

∆k = |uk+1(x, y)−uk(x, y)| (3.10)

and

δk =
|uk+1(x, y)−uk(x, y)|

|uk+1(x, y)| . (3.11)

4. Numerical Examples
To illustrate the basic idea of RPSM, we consider the following time-fractional Helmholtz and
coupled Helmholtz equations [12].

Example 1. Consider the time-fractional homogeneous Helmholtz equation

Dα
x u+Dα

y u−u = 0, 1<α≤ 2 (4.1)

subject to the boundary condition

u(0, y)= y,ux(0, y)= y+cosh(y). (4.2)

We define the residual function for the kth residual function as follows:

Resuk (x, y)= Dα
x uk +Dα

y uk −uk . (4.3)

Applying to the 0th RPS approximate solution of u(x, y), we have in the following form

u0(x, y)= u(x,0)= u(0, y)+ xux(0, y)= y(1+ x)+ xcosh(y)= f0(y). (4.4)

To determine f1(x), u1(x, y) and Resu1(x, y) are constructed as follows:

u1(x, y)= f0(y)+ f1(y)
xα

Γ(1+α)
(4.5)

and

Resu1(x, y)= f1(y)+Dα
y f0(y)+Dα

y f1(y)
xα

Γ(1+α)
− f0(y)− f1(y)

xα

Γ(1+α)
. (4.6)

From (3.6) and the properties of Caputo derivative, (4.6) leads to the following

f1(y)= y. (4.7)

To determine f2(x), u2(x, y) is constructed as follows

u2(x, y)= f0(y)+ f1(y)
xα

Γ(1+α)
+ f2(y)

xα+1

Γ(2+α)
. (4.8)
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From (3.9) and the properties of Caputo derivative, we obtain

f2(y)= y. (4.9)

Using (3.4), we have

u(x, y)= y(1+ x)+ xcosh(y)+ y
xα

Γ(1+α)
+ y

xα+1

Γ(2+α)
+ y

xα+2

Γ(3+α)
+ . . . . (4.10)

It can be easily observe that using (3.3) leads immediately to the solution of (3.10) given by

u(x, y)= xcosh(y)+ yEα,1(xα). (4.11)

It is clear from Figure 1-3, for different orders of fractional derivatives that the approximate
solutions of gives better results for small values x and t. As it can be seen from Table 1-3 the
absolute error of the approximate solution gets closer to the exact solution as fractional order α
increases to 2 for 3rd RPS approximate solution.

Table 1. Absolute and relative errors of Example 1 with exact solution for α= 2

k x y Exact ∆k δk

0 0.4 0.4 1.02916 3.20e-02 3.02e-02
0.8 1.72843 6.40e-02 3.57e-02

0.8 0.4 1.75491 1.28e-01 6.80e-02
0.8 2.85005 2.56e-01 8.24e-02

1 0.4 0.4 1.02916 4.27e-03 4.00e-03
0.8 1.72843 8.53e-03 4.74e-03

0.8 0.4 1.75491 3.41e-02 1.78e-02
0.8 2.85005 6.83e-02 2.15e-02

2 0.4 0.4 1.02916 4.27e-04 4.00e-04
0.8 1.72843 8.53e-04 4.74e-04

0.8 0.4 1.75491 6.83e-03 3.55e-03
0.8 2.85005 1.37e-02 4.28e-03

Table 2. Absolute and relative errors of Example 1 with exact solution for α= 1.8

k x y Exact ∆k δk

0 0.4 0.4 1.09192 4.59e-02 4.03e-02
0.8 1.85395 9.17e-02 4.71e-02

0.8 0.4 1.84061 1.60e-01 7.98e-02
0.8 3.02145 3.19e-01 9.56e-02

1 0.4 0.4 1.09192 6.55e-03 5.72e-03
0.8 1.85395 1.31e-02 6.69e-03

0.8 0.4 1.84061 4.56e-02 2.23e-02
0.8 3.02145 9.12e-02 2.66e-02

2 0.4 0.4 1.09192 6.90e-04 6.02e-04
0.8 1.85395 1.38e-03 7.04e-04

0.8 0.4 1.84061 9.60e-03 4.67e-03
0.8 3.02145 1.92e-02 5.57e-03
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Table 3. Absolute and relative errors of Example 1 with exact solution for α= 1.6

k x y Exact ∆k δk

0 0.4 0.4 1.16649 6.46e-02 5.25e-02
0.8 2.00310 1.29e-01 6.06e-02

0.8 0.4 1.92817 1.96e-01 9.22e-02
0.8 3.19658 3.92e-01 1.09e-01

1 0.4 0.4 1.16649 9.94e-03 8.01e-03
0.8 2.00310 1.99e-02 9.23e-03

0.8 0.4 1.92817 6.02e-02 2.76e-02
0.8 3.19658 1.20e-01 3.25e-02

2 0.4 0.4 1.16649 1.10e-03 8.89e-04
0.8 2.00310 2.21e-03 1.02e-03

0.8 0.4 1.92817 1.34e-02 6.09e-03
0.8 3.19658 2.68e-02 7.17e-02

1
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Figure 1. The approximate solution when α= 2 of Example 1
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Figure 2. The approximate solution when α= 1.8 of Example 1
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Figure 3. The approximate solution when α= 1.6 of Example 1

Example 2. Consider the time-fractional homogeneous coupled Helmholtz equation

D2α
x u+D2α

y v−u = 0, (4.12)

D2α
x v+D2α

y u−v = 0, (4.13)

subject to the boundary condition

u(0, y)= 0, Dα
x u(0, y)= Eα,1(yα), (4.14)

v(0, y)= 0, Dα
x v(0, y)=−Eα,1(yα), (4.15)

where 0<α≤ 1. Applying to the 0th RPS approximate solution of u(x, y) we have

u0(x, y)= u(x,0)= u(0, y)+ xα

Γ(1+α)
ux(0, y)= Eα,1(yα)

xα

Γ(1+α)
= f0(y), (4.16)

v0(x, y)= v(x,0)= v(0, y)+ xα

Γ(1+α)
vx(0, y)=−Eα,1(yα)

xα

Γ(1+α)
= g0(y). (4.17)

To determine f1(x) and g1(x), we consider

u1(x, y)= f0(y)+ f1(y)
x2α

Γ(1+2α)
, (4.18)

v1(x, y)= g0(y)+ g1(y)
x2α

Γ(1+2α)
, (4.19)

and

Resu1(x, y)= f1(y)+D2α
y g0(y)+D2α

y g1(y)
x2α

Γ(1+2α)
− f0(y)− f1(y)

x2α

Γ(1+2α)
, (4.20)

Resv1(x, y)= g1(y)+D2α
y f0(y)+D2α

y f1(y)
x2α

Γ(1+2α)
− g0(y)− g1(y)

x2α

Γ(1+2α)
. (4.21)

From (3.7) and the properties of Caputo derivative we obtain

f1(y)= 0, (4.22)
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g1(y)= 0. (4.23)

To determine f2(x) and g2(x), we consider

u1(x, y)= f0(y)+ f1(y)
x2α

Γ(1+2α)
+ f2(y)

x3α

Γ(1+3α)
, (4.24)

v1(x, y)= g0(y)+ g1(y)
x2α

Γ(1+2α)
+ g2(y)

x3α

Γ(1+3α)
. (4.25)

From (3.9) and the properties of Caputo derivative we get

f2(x)= 2Eα,1(yα), (4.26)

g2(x)=−2Eα,1(yα). (4.27)

Using (2.5) leads immediately to the solution of (3.10) given by

u(x, y)= Eα,1(yα)
(

xα

Γ(1+α)
+2

x3α

Γ(1+3α)
+ . . .

)
= Eα,1(yα)

sinhα(
p

2xα)p
2

, (4.28)

v(x, y)=−Eα,1(yα)
(

xα

Γ(1+α)
+2

x3α

Γ(1+3α)
+ . . .

)
=−Eα,1(yα)

sinhα(
p

2xα)p
2

. (4.29)

It is clear from Figure 4-6 for different orders of fractional derivatives that the approximate
solutions of gives better results for small values x and t. As it can be seen from Table 4-6 the
absolute error of the approximate solution gets closer to the exact solution as fractional order α
increases to 1 for 3rd RPS approximate solution.

Table 4. Absolute and relative errors of Example 2 with exact solution for α= 1

k x y Exact u Exact v ∆k δk

0 0.4 0.4 0.62903 −0.62903 3.18e-02 5.06e-02

0.8 0.93714 −0.93714 4.74e-02 5.06e-02

0.8 0.4 1.46478 −1.46478 2.55e-01 1.76e-01

0.8 2.18224 −2.18224 3.79e-01 1.76e-01

1 0.4 0.4 0.62903 −0.62903 5.09e-04 8.10e-04

0.8 0.93714 −0.93714 7.59e-04 8.10e-04

0.8 0.4 1.46478 −1.46478 1.63e-02 1.12e-02

0.8 2.18224 −2.18224 2.43e-02 1.12e-02

2 0.4 0.4 0.62903 −0.62903 3.88e-06 6.17e-06

0.8 0.93714 −0.93714 5.78e-06 6.17e-06

0.8 0.4 1.46478 −1.46478 4.97e-04 3.40e-04

0.8 2.18224 −2.18224 7.40e-04 3.41e-04
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Table 5. Absolute and relative errors of Example 2 with exact solution for α= 0.8

k x y Exact u Exact v ∆k δk

0 0.4 0.4 0.89216 −0.89216 1.28e-01 1.26e-01
0.8 1.37193 −1.37193 1.97e-01 1.26e-01

0.8 0.4 1.80012 −1.80012 6.76e-01 3.04e-01
0.8 2.76817 −2.76817 1.04e-01 3.04e-01

1 0.4 0.4 0.89216 −0.89216 7.34e-03 7.20e-03
0.8 1.37193 −1.37193 1.13e-02 7.21e-03

0.8 0.4 1.80012 −1.80012 1.18e-01 5.13e-02
0.8 2.76817 −2.76817 1.81e-01 5.18e-02

2 0.4 0.4 0.89216 −0.89216 2.36e-04 2.31e-04
0.8 1.37193 −1.37193 3.63e-04 2.32e-04

0.8 0.4 1.80012 −1.80012 1.15e-02 4.94e-03
0.8 2.76817 −2.76817 1.76e-02 5.04e-03

Table 6. Absolute and relative errors of Example 2 with exact solution for α= 0.6

k x y Exact u Exact v ∆k δk

0 0.4 0.4 0.89216 −0.89216 4.81e-01 2.62e-01
0.8 1.37193 −1.37193 7.49e-01 2.62e-01

0.8 0.4 1.80012 −1.80012 1.68e+00 4.49e-01
0.8 2.76817 −2.76817 2.61e+00 4.49e-01

1 0.4 0.4 0.89216 −0.89216 8.96e-02 4.65e-02
0.8 1.37193 −1.37193 1.39e-01 6.65e-02

0.8 0.4 1.80012 −1.80012 7.17e-01 1.61e-01
0.8 2.76817 −2.76817 1.12e+00 1.61e-01

2 0.4 0.4 0.89216 −0.89216 1.10e-02 5.67e-03
0.8 1.37193 −1.37193 1.71e-02 5.67e-03

0.8 0.4 1.80012 −1.80012 2.02e-01 4.34e-02
0.8 2.76817 −2.76817 3.14e-01 4.34e-02

1
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Figure 4. The approximate solution when α= 1 of Example 2
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Figure 5. The approximate solution when α= 0.8 of Example 2
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Figure 6. The approximate solution when α= 0.6 of Example 2

5. Conclusion
The approximate analytical solution of the time-fractional Helmholtz and coupled Helmholtz
equations are constructed by RPSM. The results show that the obtained approximation is one
of the best, since it can be applied directly to the problem without linearization, perturbation or
discretization. In the future research, we apply this method or modification of this method to
various problem in science.
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