Communications in Mathematics and Applications Volume 2 (2011), Numbers 2-3, pp. 131–144 © RGN Publications

Continuous Wavelet Transform on the One-sheeted Hyperboloid

A. Askari Hemmat and Z. Yazdani Fard

Abstract. In this work a constructive theory for the CWT on the one-sheeted hyperboloid, $H^{1,1}$, has been developed. The construction is based on the notion of convolution on this manifold. We defined the affine transformations on the $H^{1,1}$. These are of two types: motions and dilations. We defined the CWT on $H^{1,1}$ through a $H^{1,1}$ -convolution and derived the corresponding admissibility condition.

1. Introduction

Several applications exist in which data living on a non-Euclidean manifold. In this situations the *continuous wavelet transform* (CWT) is a suitable tool for data analysis. In 1998 Antoine and Vandergheynst built wavelets on the 2-sphere, S^2 , that are coherent states associated on the Lorentz group $SO_0(3, 1)$. Let us expose here some details for this construction. This discussion is borrowed and adopted from [2]. The first step for constructing a CWT on S^2 is to identify the appropriate transformations. These are of two types: (i) motions, which are given by elements of the rotation group SO(3), and (ii) dilations which acts on a point $\omega = (\theta, \varphi)$ by:

$$D_a(\theta,\varphi) = (\theta_a,\varphi), \text{ with } \tan \frac{\theta_a}{2} = a \tan \frac{\theta}{2}.$$

Motions and dilations embed into the Lorentz group $SO_0(3,1)$, by the Iwasawa decomposition $SO_0(3,1) = SO(3) \cdot A \cdot N$, where $A \simeq SO_0(1,1) \simeq \mathbb{R} \simeq \mathbb{R}^+_*$ and $N \simeq \mathbb{C}$. Thus the parameter space of the CWT is $X = SO_0(3,1)/N$, and a natural section is $\sigma(\rho, a) = \rho \cdot a \cdot 1$, with $\rho \in SO(3)$ and $a \in A$. The next step is to find an appropriate *unitary irreducible representation* (UIR) of $SO_0(3,1)$ in $L^2(S^2, d\mu)$. A possible choice is:

$$[U(g)f](\omega) = \lambda(g, \omega)^{\frac{1}{2}} f(g^{-1}\omega), \ g \in SO_0(3, 1), f \in L^2(S^2, d\mu),$$

2010 Mathematics Subject Classification. 42C15, 42C40, 65T60.

Key words and phrases. Continuous wavelet transform; Fourier-Helgason transform; one-sheeted hyperboloid.

where $\lambda(g, \omega)$ is the Radon-Nikodym derivative. The representation *U* is square integrable on *X*, that is, there exist nonzero admissible vector $\eta \in L^2(S^2, d\mu)$ such that

$$\int_0^\infty \frac{da}{a^3} \int_{SO(3)} d\rho |\langle U(\sigma(\rho, a))\eta | \phi \rangle|^2 < \infty, \quad \text{for all } \phi \in L^2(S^2, d\mu),$$

where $d\rho$ is the left Haar Measure on *SO*(3).

Proposition 1 ([2]). An admissible wavelet is a function $\eta \in L^2(S^2, d\mu)$ for which there exists a positive constant $c < \infty$ such that

$$\frac{8\pi^2}{2\ell+1}\sum_{|m|\leq \ell}\int_0^\infty \frac{da}{a^3}|\langle Y_\ell^m|\eta_a\rangle|^2\leq c, \ \ \text{for all}\ \ell\in\mathbb{N}.$$

where Y_{ℓ}^{m} denotes the usual spherical harmonic and $\eta_{a} = U(\sigma(e, a))\eta$.

Given the admissible wavelet η , the spherical CWT of a function $f \in L^2(S^2, d\mu)$ with respect to η is defined by

$$W_{f}(\rho, a) = \langle U(\sigma(\rho, a))\eta | f \rangle$$
$$= \int_{S^{2}} d\mu(\omega) \overline{\eta_{a}(\rho^{-1}\omega)} f(\omega),$$

where $\rho \in SO(3)$, a > 0.

In 2004 Bogdanova, Vandergheynst and Gazeau built the CWT on the upper sheet of two-sheeted hyperboloid, H_+^2 [4]. We review very briefly this construction: In polar coordinated, H_+^2 may be parametrized as $x = (x_0, x_1, x_2) = x(\chi, \varphi)$, where $x_0 = \cosh \chi$, $x_1 = \sinh \chi \cos \varphi$, $x_2 = \sinh \chi \sin \varphi$ and $\chi \ge 0$, $0 \le \varphi < 2\pi$. Affine transformations on H_+^2 are of two types:

(i) *Motions*: hyperbolic motions, $g \in SO_0(1,2)$, act on $x(\chi,\varphi) \in H^2_+$ in the following way. A motion $g \in SO_0(1,2)$ can be factorized as $g = k_1hk_2$, where $k_1, k_2 \in SO(2)$, $h \in SO_0(1,1)$, and the respective action of k_i 's, i = 1, 2 and h are the following:

$$k_i(\varphi_0) \cdot x(\chi, \varphi) = x(\chi, \varphi + \varphi_0), \quad i = 1, 2,$$

$$h(\chi_0) \cdot x(\chi, \varphi) = x(\chi + \chi_0, \varphi).$$

(ii) Dilations through conic projection and flattening: one projects H^2_+ onto its tangent half null-cone $C^+ = \{x = (x_0, x_1, x_2) \in \mathbb{R}^3 : x_0^2 - x_1^2 - x_2^2 = 0, x_0 > 0\}$, and then vertically onto the plane $x_0 = 0$.

$$x \in H^2_+ \to \Phi(x) \in C^+ \to \Pi_0 \Phi(x) \in \mathbb{R}^2 \simeq \mathbf{C}.$$

Consider the following family of projections indexed by a positive parameter *p*:

$$\Pi_p \Phi(x) = \frac{1}{p} \sinh p \chi e^{i\varphi}, \quad x = x(\chi, \varphi).$$

The dilation operator acts on a point $x(\chi, \varphi) \in H^2_+$ by:

 $D_a(\chi,\varphi) = (\chi_a,\varphi), \text{ with } \sinh p \chi_a = a \sinh p \chi.$

The action of dilation on H_{+}^2 , is shown in Figure 1.

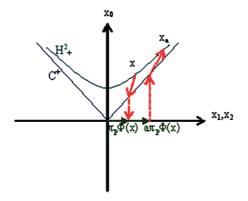


Figure 1. Cross-section of dilation on H_{\perp}^2

Theorem 2 ([4]). If $\alpha(a)da$ is a homogeneous measure of the form $a^{-\beta}da$, then a square-integrable function ψ on H^2_+ with compact support is a wavelet if $\beta > \frac{2}{p} + 1$ and the following zero-mean condition has to be satisfied:

$$\int_{H^2_+} \psi(\chi,\varphi) \left[\frac{\sinh 2p\chi}{\sinh \chi} \right]^{\frac{1}{2}} d\mu(\chi,\varphi) = 0,$$

where $d\mu(\chi, \varphi) = \sinh \chi d\chi d\varphi$ is the measure on H^2_+ .

Given an admissible hyperbolic wavelet ψ , the hyperbolic CWT of $f \in L^2(H^2_+, d\mu)$ is

$$W_{f}(g,a) = \langle \psi_{a,g} | f \rangle = \int_{H^{2}_{+}} \overline{\psi_{a}(g^{-1}x)} f(x) d\mu(x), \ g \in SO_{0}(2,1), \ a > 0.$$

As in the spherical case $\psi_a(x) = \lambda(a, x)^{\frac{1}{2}} \psi(D_{\frac{1}{a}}x)$, with D_a an appropriate dilation, and $\lambda(a, x)$ is the corresponding Radon-Nikodym derivative.

We will denote by $H^{1,1}$ the one-sheeted hyperboloid. This paper is organized as follows: In section 2 we sketch the geometry of the one sheeted hyperboloid $H^{1,1}$. In section 3 we define affine transformations on the $H^{1,1}$. There are two fundamental operations: dilations and motions represented by the group $SO_o(1,2)$. In section 4, we study the harmonic analysis on $H^{1,1}$ and in section 5 define the CWT on $H^{1,1}$ through a hyperbolic convolution. Theorems 5 and 6 are our main results. The first one states an admissibility condition for the existence of $H^{1,1}$ wavelets and the second shows that the admissibility condition simplifies to a zeromean condition. Finally we give an example of $H^{1,1}$ -wavelet. A. Askari Hemmat and Z. Yazdani Fard

2. Geometry of the one-sheeted hyperboloid

A hyperboloid is a quadratic surface which may be one or two-sheeted. The onesheeted hyperboloid is a surface of revolution obtained by rotating a hyperbola about the perpendicular bisector to the line between the foci, while the twosheeted hyperboloid is a surface of revolution obtained by rotating a hyperbola about the line joining the foci. The one-sheeted hyperboloid oriented along the x_0 -axis has Cartesian equation $x_0^2 - x_1^2 - x_2^2 = -1$ and parametric equations

 $x_0 = \sinh \chi, x_1 = \cosh \chi \cos \varphi, x_2 = \cosh \chi \sin \varphi, \ \chi \in \mathbb{R}, 0 \le \varphi < 2\pi,$

where $\chi \in \mathbb{R}$ is the arc length from the equator to the given point on the hyperboloid over meridians for fixed φ , while φ is the arc length over the orbit for fixed χ , as shown in Figure 2.

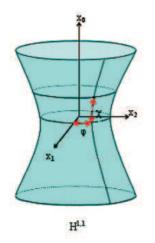


Figure 2. Geometry of the one-sheeted hyperboloid

The measure element on the hyperboloid is $d\mu = \cosh \chi d\chi d\varphi$. The measure μ is σ -finite, because $H^{1,1}$ is a countable union of sets $O_n = \{x(\chi, \varphi) \in H^{1,1} : \chi \in [-n, n], 0 \le \varphi < 2\pi\}$ with

$$\mu(O_n) = \int_{O_n} d\mu(x) = \int_0^{2\pi} \int_{-n}^n \cosh \chi \, d\chi \, d\varphi = 4\pi \sinh n < \infty.$$
(2.1)

Consider \mathbb{R}^3 with Lorentzian metric

$$(x_0, x_1, x_2) \cdot (y_0, y_1, y_2) = x_0 y_0 - x_1 y_1 - x_2 y_2, (x^2 = x \cdot x),$$

we introduce the cone $C = \{\xi \in \mathbb{R}^3 : \xi^2 = 0\}$ and half cone $C^+ = \{\xi \in \mathbb{R}^3 : \xi^2 = 0, \xi_0 > 0\}$ and use the conic projection, to endow one-sheeted hyperboloid $H^{1,1} = \{x \in \mathbb{R}^3 : x^2 = -1\}$ with a local Euclidean structure. The cone *C* has Euclidean nature. All points of $H^{1,1}$ will be mapped onto *C* using a specific conic projection.

3. Affine transformations on the one-sheeted hyperboloid

Affine transformations on $H^{1,1}$ are of two types:

(1) Motions are given by elements of $SO_0(1,2)$. A motion $g \in SO_0(1,2)$ can be factorized as $g = k_1hk_2$, where $k_1, k_2 \in SO(2)$, $h \in SO_0(1,1)$, and the respective action of k_i 's for i = 1, 2 and h are as follows:

$$k_i(\varphi_0) \cdot x(\chi, \varphi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi_0 & -\sin \varphi_0 \\ 0 & \sin \varphi_0 & \cos \varphi_0 \end{pmatrix} \begin{pmatrix} \sinh \chi \\ \cosh \chi \cos \varphi \\ \cosh \chi \sin \varphi \end{pmatrix} = x(\chi, \varphi + \varphi_0),$$

and

$$h(\chi_0) \cdot x(\chi, 0) = \begin{pmatrix} \cosh \chi_0 & \sinh \chi_0 & 0\\ \sinh \chi_0 & \cosh \chi_0 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sinh \chi\\ \cosh \chi\\ 0 \end{pmatrix} = x(\chi + \chi_0, 0).$$

Also we define:

$$h(\chi_o) \cdot x(\chi, \varphi) = k(\varphi)h(\chi_0)k(-\varphi) \cdot x(\chi, \varphi)$$
$$= x(\chi + \chi_o, \varphi).$$

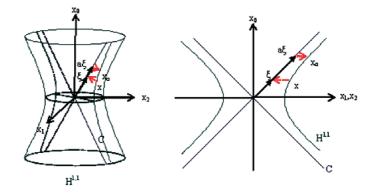


Figure 3. Action of dilation on $H^{1,1}$

The action of a motion on point $x \in H^{1,1}$ is the displacement by a hyperbolic angle $\chi \in \mathbb{R}$ and rotation by an angle φ .

(2) Dilations by a scale factor $a \in \mathbb{R}^+_*$. We use a radial dilation on $H^{1,1}$, which is obtained in three steps:

(i) given a point $x = x(\chi, \varphi) \in H^{1,1}$, project it to the point

 $\xi = (\sinh \chi, \sinh \chi \cos \varphi, \sinh \chi \sin \varphi) \in C,$

- (ii) dilate ξ to $a\xi$ on cone *C*,
- (iii) project back $x_a = x(\chi_a, \varphi)$ with $\sinh \chi_a = a \sinh \chi$.

The action of the dilation on one-sheeted hyperboloid, $H^{1,1}$, is depicted in Figure 3.

4. Harmonic analysis on $H^{1,1}$

4.1. Fourier-Helgason transform

For all compactly supported smooth functions f on $H^{1,1}$, $f \in \mathscr{C}^{\infty}_{c}(H^{1,1})$ introduce the following pair of transforms

$$\hat{f}_{\pm}(v,\xi) = \int_{H^{1,1}} (x \cdot \xi)_{\pm}^{-\frac{1}{2} - iv} f(x) d\mu(x)$$
$$= \langle f(x), \varepsilon_{v,\xi}^{\pm}(x) \rangle, \qquad (4.1)$$

where $v \in \mathbb{R}^+$, ξ varies on the cone C^+ and the kernels $\varepsilon_{v,\xi}^{\pm}(x) = (x \cdot \xi)_{\pm}^{-\frac{1}{2}+iv}$ are hyperbolic plane waves (eigenfunctions of the Laplacian),

$$\varepsilon_{\nu,\xi}^{\pm}(x) = (x \cdot \xi)_{\pm}^{-\frac{1}{2} + i\nu}$$

= $H(x \cdot \xi) |x \cdot \xi|^{-\frac{1}{2} + i\nu} \mp i e^{\pm \pi \nu} H(-(x \cdot \xi)) |x \cdot \xi|^{-\frac{1}{2} + i\nu},$ (4.2)

in which H(t) is the Heaviside function. The formula (4.1) is called the *Fourier-Helgason transform*. Let us express the plane waves in polar coordinates. For points $x = x(\chi, \varphi) = (\sinh \chi, \cosh \chi \cos \varphi, \cosh \chi \sin \varphi) \in H^{1,1}$ and $\xi(\gamma) = \xi_0(1, \cos \gamma, \sin \gamma) \in C^+$ we have

$$\varepsilon_{\nu,\xi}^{\pm}(x) = (\xi_0[\sinh \chi - \cos(\varphi - \gamma)\cosh \chi])^{-\frac{1}{2} + i\nu}$$

Applying any rotation $\rho \in SO(2) \subseteq SO_0(1,2)$, on these waves, we have

$$\varepsilon_{\nu,\xi}^{\pm}(\rho^{-1}x) = \varepsilon_{\nu,\rho\xi}^{\pm}(x)$$

The inverse of Fourier-Helgason transform, \mathscr{FH}^{-1}_{\pm} , is defined as

$$\mathscr{FH}_{\pm}^{-1}[g] = \int_{j\Xi} g(v,\xi)(x\cdot\xi)^{-\frac{1}{2}+iv} d\eta(v,\xi), \quad \forall \ g \in \mathscr{C}^{\infty}(\mathscr{L}),$$

where $\mathscr{C}^{\infty}(\mathscr{L})$ is the space of smooth sections of line-bundle \mathscr{L} over $\Xi = \mathbb{R}^+ \times S^1$ and

$$\begin{array}{rccc} j:\Xi & \longrightarrow & \mathbb{R}^+ \times C^+ \\ (v, \widetilde{\xi}) & \longmapsto & (v, (1, \widetilde{\xi})) \end{array}$$

Since $\mathscr{C}^{\infty}_{c}(H^{1,1})$ is dense in $L^{p}(H^{1,1})$, $1 \leq p < \infty$, the Fourier-Helgason transform extends to $L^{p}(H^{1,1})$. By (2.1) and Tonelli's theorem for $f \in L^{2}(H^{1,1})$ we have

$$\int_{j\Xi} |\hat{f}_{\pm}(v,\xi)|^2 d\eta(v,\xi) = \int_{j\Xi} \hat{f}_{\pm}(v,\xi) \overline{\hat{f}_{\pm}(v,\xi)} d\eta(v,\xi)$$
$$= \int_{j\Xi} \overline{\hat{f}_{\pm}(v,\xi)} d\eta(v,\xi) \int_{H^{1,1}} f(x) (x \cdot \xi)_{\pm}^{-\frac{1}{2} - iv} d\mu(x)$$

Continuous Wavelet Transform on the One-sheeted Hyperboloid

$$= \int_{H^{1,1}} f(x) d\mu(x) \overline{\int_{j\Xi} \hat{f}_{\pm}(v,\xi) (x \cdot \xi)_{\pm}^{-\frac{1}{2} + iv}} d\eta(v,\xi)$$

$$= \int_{H^{1,1}} f(x) \overline{f(x)} d\mu(x)$$

$$= \int_{H^{1,1}} |f(x)|^2 d\mu(x)$$

$$= ||f||_2^2.$$
(4.3)

This shows that $\hat{f}_{\pm} \in L^2(\mathscr{L})$ and that $\|f\|_2 = \|\hat{f}_{\pm}\|_2$ holds.

Proposition 3. If f is a rotation invariant function, i.e., $f(\rho^{-1}x) = f(x)$, for all $\rho \in SO(2)$, then its Fourier-Helgason transform $\hat{f}_{\pm}(v,\xi)$ is a function of v alone, i.e., $\hat{f}_{\pm}(v)$.

Proof. Let f be a rotation invariant function. Applying the Fourier-Helgason transform on f we write

$$\begin{split} \hat{f}_{\pm}(v,\xi) &= \int_{H^{1,1}} \overline{\varepsilon_{v,\xi}^{\pm}(x)} f(x) d\mu(x) \\ &= \int_{H^{1,1}} \overline{\varepsilon_{v,\xi}^{\pm}(x)} f(\rho^{-1}x) d\mu(x) \\ &= \int_{H^{1,1}} \overline{\varepsilon_{v,\xi}^{\pm}(\rho x')} f(x') d\mu(x') \\ &= \int_{H^{1,1}} \overline{\varepsilon_{v,\rho^{-1}\xi}^{\pm}(x')} f(x') d\mu(x') \\ &= \hat{f}_{\pm}(v,\rho^{-1}\xi), \end{split}$$

and so $\hat{f}_{\pm}(v,\xi)$ does not depend on ξ .

4.2. Convolutions on $H^{1,1}$

Since $H^{1,1}$ is a homogeneous space of $SO_0(1,2)$, $H^{1,1} = \frac{SO_0(1,2)}{SO_0(1,1)}$, one can easily define a convolution. First, given $f \in L^2(H^{1,1})$ and $s \in L^1(H^{1,1})$, their $H^{1,1}$ -convolution is defined by:

$$(f * s)(g) = \int_{H^{1,1}} f(g^{-1}x)s(x)d\mu(x), \text{ for all } g \in SO_0(1,2).$$

Next, one may take the restriction to $H^{1,1}$, using a section

$$[\cdot]: H^{1,1} \longrightarrow SO_0(1,2) x(\chi,\varphi) \longmapsto g = k(\varphi)h(\chi) = [x], k(\varphi) \in SO(2), h(\chi) \in SO_0(1,1)$$

A. Askari Hemmat and Z. Yazdani Fard

and define

$$(f * s)(y) = \int_{H^{1,1}} f([y]^{-1}x)s(x)d\mu(x), \quad y \in H^{1,1}.$$

Let $f \in L^2(H^{1,1})$ and $s \in L^1(H^{1,1})$ then $s * f \in L^2(H^{1,1})$ and $||s * f||_2 \le ||s||_1 ||f||_2$ by the Young's inequality.

We will mostly deal with $H^{1,1}$ -convolution kernels that are symmetric and rotation invariant functions on $H^{1,1}$. The Fourier-Helgason transform of such an element has a simpler form as shown by the following theorem.

Theorem 4. Given $f \in L^2(H^{1,1})$ and let $s \in L^1(H^{1,1})$ be rotation invariant and symmetric i.e. $s(-\chi, \varphi) = s(\chi, \varphi)$, then $s * f \in L^2(H^{1,1})$ and

 $\widehat{(s*f)}_{\pm}(v,\xi) = \widehat{f}_{\pm}(v,\xi)\widehat{s}_{\pm}(v).$

Proof. We use polar coordinates for $x = x(\chi, \varphi)$ and $y = y(\chi', \varphi')$ in $H^{1,1}$. Since s is SO(2)-invariant, we have $s([y]^{-1}x) = s(h(-\chi') \cdot x(\chi, \varphi)) = s(\chi - \chi', \varphi) = s(\chi - \chi', 0)$, and similarly $s([x]^{-1}y) = s(\chi' - \chi, 0)$. Since s is symmetric, we have $s([y]^{-1}x) = s([x]^{-1}y)$. Thus, the convolution with a symmetric rotation invariant function is given by

$$(s*f)(y) = \int_{H^{1,1}} s([y]^{-1}x)f(x)d\mu(x)$$
$$= \int_{H^{1,1}} s([x]^{-1}y)f(x)d\mu(x)$$

Applying the Fourier-Helgason transform on s * f we get

$$\widehat{(s * f)}_{\pm}(v, \xi) = \int_{H^{1,1}} (y \cdot \xi)_{\pm}^{-\frac{1}{2} - iv} (s * f)(y) d\mu(y)$$

$$= \int_{H^{1,1}} d\mu(y) \int_{H^{1,1}} d\mu(x) s([y]^{-1}x) f(x) (y \cdot \xi)_{\pm}^{-\frac{1}{2} - iv}$$

$$= \int_{H^{1,1}} d\mu(x) f(x) \int_{H^{1,1}} d\mu(y) s([y]^{-1}x) (y \cdot \xi)_{\pm}^{-\frac{1}{2} - iv}$$

$$= \int_{H^{1,1}} d\mu(x) f(x) \int_{H^{1,1}} d\mu(y) s(y) ([x]^{-1}y) (y \cdot \xi)_{\pm}^{-\frac{1}{2} - iv}$$

$$= \int_{H^{1,1}} d\mu(x) f(x) \int_{H^{1,1}} d\mu(y) s(y) ([x]^{-1}\xi)_{\pm}^{-\frac{1}{2} - iv}$$

$$= \int_{H^{1,1}} d\mu(x) f(x) \int_{H^{1,1}} d\mu(y) s(y) (y \cdot [x]^{-1}\xi)_{\pm}^{-\frac{1}{2} - iv}$$

we can write $(y \cdot [x]^{-1}\xi) = ([x]^{-1}\xi)_1 \left(y \cdot \frac{[x]^{-1}\xi}{([x]^{-1}\xi)_1} \right)$, and using $([x]^{-1}\xi)_1 = -(x \cdot \xi)$, we finally obtain

$$\widehat{(s*f)}_{\pm}(v,\xi) = \int_{H^{1,1}} d\mu(x) f(x) (x \cdot \xi)_{\pm}^{-\frac{1}{2} - iv} \\ \times \int_{H^{1,1}} d\mu(y) s(y) \left(y \cdot \frac{-[x]^{-1}\xi}{([x]^{-1}\xi)_1} \right)^{-\frac{1}{2} - iv} \\ = \widehat{f}_{\pm}(v,\xi) \widehat{s}_{\pm}(v)$$

where we used the rotation invariance of s.

5. Continuous wavelet transform on the one-sheeted hyperboloid

Now, we are in a situation to define the CWT on the one-sheeted hyperboloid. We say $\psi \in L^1(H^{1,1})$ is admissible if the family $\{\psi_{a,[x]} : a > 0, x \in H^{1,1}\}$ is a continuous frame. Given an admissible $H^{1,1}$ -wavelet ψ , the $H^{1,1}$ -CWT of $f \in L^2(H^{1,1})$ is

$$W_f(a,g) := \langle \psi_{a,g} | f \rangle = \int_{H^{1,1}} \overline{\psi_a(g^{-1}x)} f(x) d\mu(x), g \in SO_0(1,2), \ a > 0$$

where $\psi_a(x) = \lambda(a, x)^{\frac{1}{2}} \psi(D_{\frac{1}{a}}x)$ such that $\lambda(a, x) = \frac{d\mu(x_{\frac{1}{a}})}{d\mu(x)}$ is the Radon-Nikodym derivative. The function $\lambda : \mathbb{R}^+_* \times H^{1,1} \to \mathbb{R}^+$ is a 1-cocycle, that is, it satisfies the equation $\lambda(a_1a_2, x) = \lambda(a_1, x)\lambda(a_2, a_1^{-1}x)$ and $\lambda(1, x) = 1$. Note that $\lambda(a, x) = \frac{d \sinh \chi_{\frac{1}{a}}}{d \sinh \chi} = \frac{1}{a}$ does not depend on χ . If the wavelet ψ is symmetric and rotation invariant, the hyperbolic CWT is a convolution:

$$W_f(g,a) \equiv W_f(x,a) = (\overline{\psi}_a * f)(x), \text{ where } g = [x], x \in H^{1,1}.$$

It remains to state an appropriate wavelet admissibility condition.

Theorem 5. Let $\psi \in L^1(H^{1,1})$ be a rotation invariant function, $a \mapsto \alpha(a)$ a positive function on \mathbb{R}^+_* , for which there exists constants m and M such that

$$0 < m \le \mathscr{A}_{\psi}(v) := \int_0^\infty |(\widehat{\psi_a})_{\pm}(v)|^2 \alpha(a) da \le M < \infty.$$
(5.1)

Then the linear operator A_{ψ} on $L^{2}(H^{1,1})$ defined by

$$A_{\psi}f(x') = \int_0^\infty \int_{H^{1,1}} W_f(x,a)\psi_{a,[x]}(x')d\mu(x)\alpha(a)da,$$

is bounded with bounded inverse. In other words, the family $\{\psi_{a,[x]}: a > 0, x \in H^{1,1}\}$ is a continuous frame.

Proof. Consider the following integral

$$\Delta = \int_0^\infty \int_{H^{1,1}} |W_f(x,a)|^2 d\mu(x) \alpha(a) da.$$

By the equality
$$(\widehat{\psi}_{a,[x]})_{\pm}(v) = (x \cdot \xi)_{\pm}^{-\frac{1}{2}-iv} (\widehat{\psi}_{a})_{\pm}(v)$$
 and Tonelli's theorem, we have

$$\Delta = \int_{0}^{\infty} \alpha(a) da \int_{H^{1,1}} d\mu(x) W_{f}(x, a) \overline{W_{f}(x, a)}$$

$$= \int_{0}^{\infty} \alpha(a) da \int_{H^{1,1}} d\mu(x) \int_{H^{1,1}} \overline{\psi}_{a,[x]}(y) f(y) d\mu(y) \int_{H^{1,1}} \psi_{a,[x]}(y) \overline{f(y)} d\mu(y)$$

$$= \int_{0}^{\infty} \alpha(a) da \int_{H^{1,1}} d\mu(x) \int_{H^{1,1}} |f(y)|^{2} d\mu(y)$$

$$\times \int_{j\Xi} \overline{(x \cdot \xi)^{-\frac{1}{2}-iv} (\widehat{\psi}_{a})_{\pm}(v) (y \cdot \xi)^{-\frac{1}{2}+iv}} d\eta(v, \xi) \int_{H^{1,1}} \psi_{a,[x]}(y) d\mu(y)$$

$$= \int_{0}^{\infty} \alpha(a) da \int_{H^{1,1}} d\mu(x) \int_{H^{1,1}} |f(y)|^{2} d\mu(y)$$

$$\times \int_{j\Xi} (x \cdot \xi)^{-\frac{1}{2}+iv} \overline{(\widehat{\psi}_{a})_{\pm}(v)} d\eta(v, \xi) \int_{H^{1,1}} \psi_{a,[x]}(y) (y \cdot \xi)^{-\frac{1}{2}-iv} d\mu(y)$$

$$= \|f\|_{2}^{2} \int_{0}^{\infty} |(\widehat{\psi}_{a})_{\pm}(v)|^{2} \alpha(a) da \int_{j\Xi} \int_{H^{1,1}} (x \cdot \xi)^{-1} d\mu(x) d\eta(v, \xi)$$

If $\mathbf{1}_K$ is the characteristic function on the set

$$\{x = (\chi, \varphi) \in H^{1,1} : -K \le \chi \le K, 0 \le \varphi < 2\pi\},\$$

then $1_K \in L(H^{1,1})$ and $1_K \nearrow 1$. Since

$$\begin{split} &\int_{j\Xi} \int_{H^{1,1}} \mathbf{1}_{K} (x \cdot \xi)^{-1} d\mu(x) d\eta(v,\xi) \\ &= \int_{j\Xi} \int_{H^{1,1}} \mathbf{1}_{K} (x \cdot \xi)^{-\frac{1}{2} - iv} (x \cdot \xi)^{-\frac{1}{2} + iv} d\mu(x) d\eta(v,\xi) \\ &= \mathbf{1}_{K}, \end{split}$$

then $\int_{j\Xi} \int_{H^{1,1}} (x \cdot \xi)^{-1} d\mu(x) d\eta(v,\xi) = 1$ by the monotone convergence theorem. Hence

$$m\|f\|_{2}^{2} \leq \int_{0}^{\infty} \int_{H^{1,1}} |W_{f}(x,a)|^{2} d\mu(x) \alpha(a) da \leq M\|f\|_{2}^{2}.$$

From Theorem 5, one obtains a reconstruction formula, which holds in $L^2(H^{1,1})$:

$$f(x') = \int_0^\infty \int_{H^{1,1}} W_f(x,a) A_{\psi}^{-1} \psi_{a,[x]}(x') d\mu(x) \alpha(a) da.$$

Some choices for the function α , leads to simplified admissibility condition (5.1) as we will now discuss.

Theorem 6. Let $\alpha(a)da$ be a homogeneous measure of the form $a^{-\beta}da$, $\beta > 0$, then a positive rotation invariant function $\psi \in L^1(H^{1,1}, d\mu)$ is admissible either if $\beta < 2$, or $\beta \geq 2$ and the following zero-mean condition is satisfied:

$$\int_{H^{1,1}} \psi(\chi,\varphi) d\mu(\chi,\varphi) = 0.$$
(5.2)

Proof. Let us assume $\psi(\chi)$ belongs to $\mathscr{C}_c(H^{1,1})$, i.e., it is continuous and compactly supported

$$\psi(\chi) = 0$$
 if $|\chi| > \widetilde{\chi}$, $\widetilde{\chi} = \text{const.}$

we wish to prove that

$$\int_{0}^{\infty} |\langle \varepsilon_{\nu,\xi}^{\pm} | \psi_{a} \rangle|^{2} \alpha(a) da < \infty.$$
(5.3)

First, we compute the Fourier-Helgason coefficients of the dilated function ψ

$$\begin{split} \langle \varepsilon_{\nu,\xi}^{\pm} | \psi_a \rangle &= \int_X \psi_a(\chi,\varphi) \overline{\varepsilon_{\nu,\xi}^{\pm}(\chi,\varphi)} d\mu(\chi,\varphi) \\ &= \int_0^{2\pi} \int_{-\widetilde{\chi}_a}^{\widetilde{\chi}_a} \lambda(a,\chi)^{\frac{1}{2}} \psi(\chi_{\frac{1}{a}},\varphi) \overline{\varepsilon_{\nu,\xi}^{\pm}(\chi,\varphi)} d\mu(\chi,\varphi) \end{split}$$

By performing the change of variable $\chi' = \chi_{\frac{1}{a}}$, we get $\chi = \chi'_a$ and $d\mu(\chi, \varphi) = \lambda(a^{-1}, \chi')d\mu(\chi', \varphi)$. The Fourier-Helgason coefficients become

$$\langle \varepsilon_{\nu,\xi}^{\pm} | \psi_a \rangle = \int_0^{2\pi} \int_{-\tilde{\chi}}^{\tilde{\chi}} \lambda(a,\chi_a')^{\frac{1}{2}} \psi(\chi',\varphi) \overline{\varepsilon_{\nu,\xi}^{\pm}(\chi_a',\varphi)} \lambda(a^{-1},\chi') d\mu(\chi',\varphi)$$

since $\lambda(a, \chi'_a)^{\frac{1}{2}} \lambda(a^{-1}, \chi') = \lambda(a^{-1}, \chi')^{\frac{1}{2}} = \sqrt{a}$, we get

$$\langle \varepsilon_{\nu,\xi}^{\pm} | \psi_a \rangle = \sqrt{a} \int_0^{2\pi} \int_{-\tilde{\chi}}^{\tilde{\chi}} \psi(\chi',\varphi) \overline{\varepsilon_{\xi,\nu}^{\pm}(\chi'_a,\varphi)} d\mu(\chi',\varphi)$$
(5.4)

we split (5.4) in three parts

$$\int_0^\infty (\cdot)\alpha(a)da = \underbrace{\int_0^\sigma (\cdot)\alpha(a)da}_{I} + \underbrace{\int_\sigma^{\frac{1}{\sigma}} (\cdot)\alpha(a)da}_{II} + \underbrace{\int_\sigma^\infty (\cdot)\alpha(a)da}_{III} + \underbrace{\int_\sigma^{\frac{1}{\sigma}} (\cdot)\alpha(a)da}_{III}.$$

We start by studying the first integral I. Since ψ is rotation invariant, we have

$$\begin{split} \langle \varepsilon_{\nu,\xi}^{\pm} | \psi_a \rangle &= \sqrt{a} \int_0^{2\pi} \int_{-\widetilde{\chi}}^{\widetilde{\chi}} \psi(k(\varphi)(\chi',\varphi)) \overline{\varepsilon_{\xi,\nu}^{\pm}(\chi'_a,\varphi)} d\mu(\chi',\varphi) \\ &= \sqrt{a} \int_0^{2\pi} \int_{-\widetilde{\chi}}^{\widetilde{\chi}} \psi(\chi',\varphi) \overline{\varepsilon_{\xi,\nu}^{\pm}(\chi'_a,0)} d\mu(\chi',\varphi) \end{split}$$

Let σ be small enough, so that *a* is small, and hence $\chi'_a \to 0$. So, because $\varepsilon_{\xi,\nu}^{\pm}(0,0) = \xi_0^{-\frac{1}{2}}$ the integral *I* is of the form

$$\xi_0^{-1} \int_0^\sigma a^{-\beta+1} da \left| \int_0^{2\pi} \int_{-\tilde{\chi}}^{\tilde{\chi}} d\mu(\chi',\varphi) \psi(\chi',\varphi) \right|^2$$

If $\beta \ge 2$, the integral *I* converges only if $\int_{H^{1,1}} \psi = 0$. The second integral *II* is straightforward, since the dilation operator is strongly

The second integral *II* is straightforward, since the dilation operator is strongly continuous and thus the integrand is bounded on $[\sigma, \frac{1}{\sigma}]$.

For the last part *III* we first rewrite the Fourier-Helgason coefficients for large scales. By performing the change of variable $\chi' = \chi_{a^{-2}}$, we get $\chi = \chi'_{a^2}$ and $d\mu(\chi,\varphi) = \lambda(a^{-2},\chi')d\mu(\chi',\varphi)$, and hence

$$\langle \varepsilon_{\nu,\xi}^{\pm} | \psi_a \rangle = \int_0^{2\pi} \int_{-\tilde{\chi}_{\frac{1}{a}}}^{\tilde{\chi}_{\frac{1}{a}}} \lambda(a, \chi_{a^2}')^{\frac{1}{2}} \psi(\chi_a', \varphi) \overline{\varepsilon_{\nu,\xi}^{\pm}(\chi_{a^2}', \varphi)} \lambda(a^{-2}, \chi') d\mu(\chi', \varphi)$$

since $\lambda(a, \chi'_{a^2})^{\frac{1}{2}}\lambda(a^{-2}, \chi') = \lambda(a, \chi')^{\frac{1}{2}}\lambda(a^2, \chi')^{\frac{1}{2}} = a^{-\frac{3}{2}}$, we get

$$\langle \varepsilon_{\nu,\xi}^{\pm} | \psi_a \rangle = a^{-\frac{3}{2}} \int_0^{2\pi} \int_{-\tilde{\chi}_{\frac{1}{a}}}^{\tilde{\chi}_{\frac{1}{a}}} \psi(\chi_a',\varphi) \overline{\varepsilon_{\xi,\nu}^{\pm}(\chi_{a^2}',\varphi)} d\mu(\chi',\varphi).$$
(5.5)

The only large scale divergence in *III* will never reached because the support property of ψ and this finally ensures convergence of the last term as well. If $\psi \in L^1(H^{1,1})$, then the desired result holds by Fatou's lemma.

We conclude this section by presenting an explicit class of admissible vectors, that is, hyperbolic wavelets. First, we need the following result.

Proposition 7. Let $\psi \in L^2(H^{1,1}, d\mu)$. Then

$$\int_{H^{1,1}} D_a \psi(\chi,\varphi) d\mu(\chi,\varphi) = \sqrt{a} \int_{H^{1,1}} \psi(\chi,\varphi) d\mu(\chi,\varphi).$$

Proof. By a simple computation, followed by the change of variables $\chi' = \chi_{\frac{1}{a}}$, we get

$$\begin{split} I &= \int_{H^{1,1}} D_a \psi(\chi,\varphi) d\mu(\chi,\varphi) \\ &= \int_{H^{1,1}} \lambda(a,\chi)^{\frac{1}{2}} \psi(\chi_{\frac{1}{a}},\varphi) d\mu(\chi,\varphi) \\ &= \int_{H^{1,1}} \lambda(a,\chi_a')^{\frac{1}{2}} \psi(\chi',\varphi) \lambda(a^{-1},\chi') d\mu(\chi',\varphi) \\ &= \int_{H^{1,1}} \lambda(a^{-1},\chi')^{\frac{1}{2}} \psi(\chi',\varphi) d\mu(\chi',\varphi). \end{split}$$

Then since $\lambda(a^{-1}, \chi')^{\frac{1}{2}} = \sqrt{a}$, we get

$$I = \sqrt{a} \int_{H^{1,1}} \psi(\chi',\varphi) d\mu(\chi',\varphi).$$

which proves the proposition.

With this result, it is easy to build a difference wavelet. Given an integrable function ψ , we define

$$f_{\psi}^{\upsilon}(\chi,\varphi) = \psi(\chi,\varphi) - \frac{1}{\sqrt{\upsilon}} D_{\upsilon}\psi(\chi,\varphi), \upsilon > 1.$$

Then it is easily checked that f_{ψ}^{υ} satisfies in the admissibility condition (5.3), that is, it is a $H^{1,1}$ -wavelet. A typical difference wavelet for the choice $\psi(\chi, \varphi) = e^{-\sinh^2 \chi}$ is

$$f_{\psi}^{\upsilon}(\chi,\varphi) = e^{-\sinh^2\chi} - \frac{1}{a}e^{-\frac{1}{\nu^2}\sinh^2\chi}.$$

Acknowledgement

This research is supported by Mahani Mathematical Research Center, Shahid Bahonar University of Kerman, Kerman, Iran.

References

- [1] S.T. Ali, J-P. Antoine and J-P. Gazeau, Coherent states, wavelets and their generalizations, Springer-Verlag, New York Berlin Heidelberg, 2000.
- [2] J-P. Antoine and P. Vandergheynst, Wavelets on the 2-sphere: A group-theoretical approach, *Applied Comput. Harmon. Anal.* **7** (1999), 262–291.
- [3] I. Bogdanova, Wavelets on non-Euclidean manifolds, Ph.D. thesis, EPFL, 2005.
- [4] I. Bogdanova, P. Vandergheynst and J-P. Gazeau, Continuous Wavelet transform on the hyperboloid, *Applied Comput. Harmon. Anal.* 23 (2007), 285–306.

A. Askari Hemmat, Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran ;

Department of Mathematics, Kerman Graduate University of Technology, Kerman, Iran;

International Center for Science, High Technology and Environmental Sciences, Kerman, Iran.

E-mail: askarihemmata@yahoo.com

Z. Yazdani Fard, Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran.

E-mail: z_yazdanifard@yahoo.com

Received May 10, 2011 Accepted October 12, 2011 143