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1. Introduction
Delay Differential Equations (DDEs) appear in many fields such as engineering science, physics,
biosciences, economics [2,7,10,14,15,18,24,27,31]. For example, neural networks [20], population
dynamics [17], time lag cell growth [1], bistable device [30] are modelled these equations.
In recent years, there are many researchers who have investigated oscillation, Hopf bifurcation,
numerical aspect and stability analysis for DDEs [3,4,6,8,16,23,29,34]. On the other hand,
Laplace transform is widely used to solve application problems in mathematics [11,26], physics
[13, 33], economics [9]. Therefore, it is a useful tool not only for mathematicians but also for
physicists and engineers.

Motivated by the above works, we investigate the following delay differential problem:

u′′(t)+au′(t)+bu′(t− r)+ cu(t)+du(t− r)= f (t), t > 0, (1.1)

u(t)=ϕ(t), −r ≤ t ≤ 0; u′(0)= γ, (1.2)
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where a, b, c, d are real constants, f (t) and ϕ(t) are given real valued and sufficiently smooth
functions, γ is a real number and r is a positive constant large delay. Furthermore, the existence
and uniqueness of solution to DDEs is discussed in [5,10,12,19,21,22,32].

It is the aim of this work to develop the Laplace transform method to establish the exact
solution a class of second order delay differential equation.

This paper is organized as follows. In Section 2, we give some definitions and preliminaries
that we use in the next sections. In Section 3, we present the main results including the solution
of the problem (1.1)-(1.2) with Laplace transformation method. In Section 4, we present two
examples to illustrate the results.

2. Definitions and Preliminaries
Definition 2.1 ([28]). Suppose that g is a real-valued function of the variable t > 0 and s is a
real parameter. The Laplace transform is defined by

L {g(t)}=
∫ ∞

0
e−st g(t)dt. (2.1)

Theorem 2.2 ([28]). Let g be a real function that has the following properties:
(1) g is piecewise continuous in every finite interval 0< t < t1 (t1 > 0).

(2) g is of exponential order; that is, there exists (α, M > 0, and t0 > 0 such that

e−αt |g(t)| < M for t > t0.

Then the Laplace transform∫ ∞

0
e−st g(t)dt

of g exist for s >α.

Theorem 2.3 ([28]). Suppose that g(t), g′(t), . . . , g(n−1)(t) real functions are continuous on (0,∞)
and of exponential order α, while g(n)(t) is piecewise continuous on [0,∞). Then

L {g(n)(t)}= snL {g(t)}− sn−1 g(0)− sn−2 g′(0)− . . .− g(n−1)(0). (2.2)

Theorem 2.4 (Lerch’s theorem, [28]). Distinct continuous functions on [0,∞) have distinct
Laplace transforms.

It means that if we restrict our attention to functions that are continuous on [0,∞), then the
inverse transform

L −1 {G(s)}= g(t)

is uniquely defined.

Theorem 2.5 (Gronwall’s inequality, [25]). Let g(t), K(t) ≥ 0, h(t) ≥ 0 real functions are
continuous on (0,∞). If

v(t)≤ g(t)+K(t)
∫ t

0
h(τ)v(τ)dτ,

then

v(t)≤ g(t)+K(t)
∫ t

0
g(τ)h(τ)e

∫ t
τ h(ξ)K(ξ)dξdτ.
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3. Main Results
In this section, we use the Laplace transform method to solve the problem (1.1)-(1.2).

Theorem 3.1. Let f (t) in (1.1) satisfies the conditions in Theorem 2.2. Then, the Laplace
transformation of u(t) (which is the exact solution of (1.1)-(1.2)) and u′(t) and u′′(t) (it’s first and
second order derivatives) exist for all s provided s >α.

Proof. Firstly, integrating the relation (1.1) over (0, t), we get

u′(t)−γ+a[u(t)−ϕ(0)]+b[u(t− r)−ϕ(−r)]+ c
∫ t

0
u(x)dx+d

∫ t

0
u(x− r)]dx =

∫ t

0
f (x)dx. (3.1)

If we integrate this equation again over (0, t), we have

u(t)−ϕ(0)− [γ+aϕ(0)+bϕ(−r)]t+
∫ t

0
[a+ c(t− x)]u(x)dx+

∫ t

0
[b+d(t− x)]u(x− r)]dx

=
∫ t

0
(t− x) f (x)dx. (3.2)

Meanwhile, replacing integral variable by x = τ+ r, we can write∫ t

0
u(x− r)dx =

∫ t−r

−r
u(τ)dτ

=
∫ 0

−r
ϕ(τ)dτ+

∫ t−r

0
u(τ)dτ

and ∫ t

0
(t− x)u(x− r)dx =

∫ t−r

−r
(t−τ− r)u(τ)dτ

=
∫ 0

−r
(t−τ− r)ϕ(τ)dτ+

∫ t−r

0
(t−τ− r)u(τ)dτ.

If we consider these expressions in Eq. (3.2), we can write

u(t)+h1(t)+
∫ t

0
[a+ c(t− x)]u(x)dx+

∫ t−r

0
[b+d(t− x− r)]u(x)]dx =

∫ t

0
(t− x) f (x)dx, (3.3)

where

h1(t)=−ϕ(0)− [γ+aϕ(0)+bϕ(−r)]t+
∫ 0

−r
[b+d(t−τ− r)]ϕ(τ)dτ.

Then,∣∣∣∣∫ t−r

0
[b+d(t− x− r)]u(x)]dx

∣∣∣∣≤ ∫ t

0
|[b+d(t− x− r)]u(x)]|dx

when this inequality is taken into account in (3.3), we can write

|u(t)| ≤ |h1(t)|+
∣∣∣∣∫ t

0
[a+ c(t− x)]u(x)dx

∣∣∣∣+ ∣∣∣∣∫ t−r

0
[b+d(t− x− r)]u(x)]dx

∣∣∣∣+ ∣∣∣∣∫ t

0
(t− x) f (x)dx

∣∣∣∣
≤ |h1(t)|+

∫ t

0
|a+ c(t− x)| |u(x)|dx+

∫ t

0
|b+d(t− x− r)| |u(x)|dx+

∫ t

0
(t− x) | f (x)|dx

≤ |h1(t)|+
∫ t

0
[|a+ c(t− x)|+ |b+d(t− x− r)|] |u(x)|dx+

∫ t

0
(t− x) | f (x)|dx

≤ |h1(t)|+h2(t)
∫ t

0
|u(x)|dx+

∫ t

0
(t− x) | f (x)|dx,
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where

h2(t)= [|a+ ct|+ |b+d(t+ r)|].
Next, if we consider e−αt| f (t)| < M1, (t > 0), we have∫ t

0
(t− x)| f (x)|dx ≤

∫ t

0
M1(t− x)eαxdx

= M1

α2 [eαt −1−αt]

≤ M1eαt

α2 .

Thus, we can write

|u(t)| ≤ |h1(t)|+ M1eαt

α2 +h2(t)
∫ t

0
|u(x)|dx. (3.4)

On the other hand,

|h1(t)| ≤ (1+|a|)|ϕ(0)|+
∫ 0

−r
[|b|+ |d|(|τ|+ r)]|ϕ(τ)|dτ+ t[|γ|+ |b||ϕ(−r)|+ |d|

∫ 0

−r
|ϕ(τ)|dτ]

and

h2(t)≤ |a|+ |b+dr|+ [|c|+ |d|]t.
Using the Gronwal’s inequality in Theorem 2.5 in eq. (3.4) we get,

|u(t)| ≤ |h1(t)|+ M1eαt

α2 +h2(t)
∫ t

0

[
|h1(τ)|+ M1eατ

α2

]
e
∫ t
τ h2(ξ)dξdτ

≤ A1 +B1t+ M1eαt

α2 + (A2 +B2t)
∫ t

0

[
(A1 +B1τ)+ M1eατ

α2

]
e
∫ t
τ (A1+B1ξ)dξdτ

≤ A1 +B1t+ M1eαt

α2 + (A2 +B2t)
∫ t

0

[
(A1 +B1τ)+ M1eατ

α2

][
eA1t+B1

t2
2 − eA1τ+B1

τ2
2

]
dτ

≤ A1 +B1t+ M1eαt

α2 + (A2 +B2t)eA1t+B1
t2
2

∫ t

0

[
(A1 +B1τ)+ M1eατ

α2

]
dτ

≤ A1 +B1t+ M1eαt

α2 + (A2 +B2t)eA1t+B1
t2
2

[(
A1t+B1

t2

2

)
+ M1(eαt −1)

α3

]
,

where A1,B1, A2,B2 are constants given as

A1 = (1+|a|) ∣∣ϕ(0)
∣∣+∫ 0

−r
[|b|+ |d| (|τ|+ r)]

∣∣ϕ(τ)
∣∣dτ,

B1 =
∣∣γ∣∣+|b| ∣∣ϕ(−r)

∣∣+|d|
∫ 0

−r

∣∣ϕ(τ)
∣∣dτ,

A2 = |a|+ |b+dr| ,B2 = |c|+ |d| .
Similar results for u′(t) and u′′(t) can be easily proved from (3.1) and (1.1), respectively.

Theorem 3.2. Let ϕ(t), ϕ′(t) are continuous on [−r,0] and F(s) is the Laplace transformation of
f (t) in (1.1). Then, the exact solution of (1.1)-(1.2)

u(t)=L −1
{

F(s)+T(s)
K(s)

}
,
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where

K(s)= s2 +as+ c+ (bs+d)e−sr,

T(s)= γ+ [s+a+be−sr]ϕ(0)−bϕ(s)−dϕ(s),

ϕ(s)=
∫ 0

−r
e−s(t+r)ϕ(t)dt, ϕ(s)=

∫ 0

−r
e−s(t+r)ϕ′(t)dt.

Proof. To solve the problem (1.1)-(1.2) by using the Laplace transform method, we recall that
the Laplace transforms of the derivatives of u(t) are given by (2.2)

L
{
u′(t)

}= sL {u(t)}−ϕ(0)

and

L
{
u′′(t)

}= s2L {u(t)}− sϕ(0)−γ .

The Laplace transform for u(t− r), using the definition (2.1), we give

L {u(t− r)}=
∫ ∞

0
e−stu(t− r)dt.

After replacing integral variable by t = x+ r we find that

L {u(t− r)}=
∫ ∞

−r
e−s(x+r)u(x)dx

=
∫ 0

−r
e−s(x+r)ϕ(x)dx+ e−sr

∫ ∞

0
e−sxu(x)dx.

Thus, we have

L {u(t− r)}=ϕ(s)+ e−srL {u(t)} .

Similarly, the Laplace transformation for u′(t− r), we can write

L
{
u′(t− r)

}= ∫ ∞

0
e−stu′(t− r)dt

=
∫ ∞

−r
e−s(x+r)u′(x)dx

=
∫ 0

−r
e−s(x+r)ϕ′(x)dx+ e−sr

∫ ∞

0
e−sxu′(x)dx.

Here, we have

L
{
u′(t− r)

}=ϕ(s)+ e−srL
{
u′(t)

}
.

Applying the Laplace transform to both sides of (1.1) gives

L {u′′(t)}+aL {u′(t)}+bL {u′(t− r)}+ cL {u(t)}+dL {u(t− r)}=L { f (t)}

and using above equalities, it can be reduced to

L {u(t)}= F(s)+T(s)
K(s)

.

Next, if we use inverse Laplace transform, we obtain the exact solution of (1.1)-(1.2).

4. Illustrations
In this section, we present two particular examples that confirm the results obtained.
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Example 4.1. We consider the following problem:

u′′(t)−3u′(t)+u′(t−1)+2u(t)−u(t−1)= 0, t > 0

subject to the interval condition,

u(t)= et, −1≤ t ≤ 0, u′(0)= 1.

If we take into consideration

F(s)= 0, T(s)= s−2+ e−s, K(s)= s2 −3s+2+ (s−1)e−s

in Theorem 2.2, we easily get

L {u(t)}= s−2+ e−s

s2 −3s+2+ (s−1)e−s = 1
s−1

and

u(t)=L −1{
1

s−1
}= et.

Example 4.2. We consider the another problem:

u′′(t)−3u′(t)+u′(t−1)+2u(t)−u(t−1)= 1, t > 0

subject to the interval condition,

u(t)= et, −1≤ t ≤ 0, u′(0)= 1.

Also, if we take account of

F(s)= 1
s

, T(s)= s−2+ e−s, K(s)= s2 −3s+2+ (s−1)e−s

in Theorem 2.2, we obtain

L {u(t)}= 1
s(s−1)(s−2+ e−s)

+ 1
s−1

and

u(t)=L −1
{

1
s(s−1)(s−2+ e−s)

+ 1
s−1

}
.

Here, inverse Laplace transformation is not always easy to find. This may be considered as
another subject of study.

5. Conclusion
In this study, the Laplace transformation method is applied to solve the linear second order
DDE. This method is a clear and efficient technique to find the analytical solutions for the wide
range of differential equations. Therefore, the results of the presented method can be extended
to solve problems such as neutral delay type and Volterra delay integro differential type.
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