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Abstract. A numerical scheme is proposed using a non polynomial spline to solve the differential-
difference equations having layer behaviour, with delay as well advanced terms. The retarded terms
are handled by using Taylor’s series, subsequently the given problem is substituted by an equivalent
second order singular perturbation problem. A finite difference scheme using non polynomial spline
is derived and it is applied to the singular perturbation problem using non standard differences
of the first derivatives. Tridiagonal algorithm is used to solve the resulting system. The method is
exemplified on numerical examples with various values of perturbation, delay and advance parameters.
Maximum absolute errors are computed and tabulated to support the method. Numerical solutions are
pictured in graphs and the effects of small shifts on the boundary layer region has been investigated.
Also, the convergence of the proposed method has also been established.
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1. Introduction
The problems of differential-difference comes about in the modelling of many practical
phenomena such as, thermo-elasticity [2], hybrid optical system [3], in population dynamics [10],
in models for physiological processes [14], red blood cell system [13], predetor-prey models [15]
and in the potential in nerve cells by random synaptic inputs in dendrites [18].
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For further study of mathematical aspects of the above class of models and singular
perturbation problems, one can be found in the collection of books, to name a few, Bellman and
Cooke [1], Doolan et al. [5], Driver [6], El’sgol’ts and Norkin [7], Kokotovic [9], Miller et al. [16]
and Smith [17].

Lange and Miura [11, 12] presented an analysis of differential-difference equations with
small shifts, layers having turning points and rapid oscillations. In [4], a fourth order finite
difference method with a fitting factor is proposed for the solution of the singularly perturbed
differential-difference equations with mixed shifts. The authors in [8], proposed a fitted
piecewise-uniform mesh method with analysis for differential difference equation having mixed
small shifts having boundary layer. With this motivation, in the next section, we describe the
problem and derivation of the of the numerical scheme using non polynomial spline.

2. Numerical Approach
Consider the singularly perturbed differential-difference equation with small delay as well as
advance terms of the form:

εw′′(t)+a(t)w′(t)+b(t)w(t−δ)+ c(t)w(t)+d(t)w(t+η)= f (t), 0< t < 1 (1)

subject to the interval and boundary conditions

w(t)=φ(t), on −δ≤ t ≤ 0 (2)

w(t)= γ(t), on 1≤ t ≤ 1+η (3)

where a(t), b(t), c(t), d(t), φ(t) and γ(t) are bounded and continuously differentiable functions
on (0,1), ε is the small perturbation parameter (0 < ε¿ 1), δ and η are the delay and the
advance parameters respectively (0< δ= o(ε); 0< η= o(ε)).

Applying Taylor series on retarded terms in the neighbourhood of the point t, we have

w (t−δ)≈ w(t)−δw′(t), (4)

w
(
t+η)≈ w(t)+ηw′(t), (5)

Using eqs. (4) and (5) in eq. (1), we get an equivalent second order singular perturbation problem
of the form:

εw′′(t)+ p(t)w′(t)+ q(t)w(t)= f (t) (6)

with boundary conditions

w(0)=φ (0) , (7)

w(1)= γ (1) , (8)

where p(t)= a(t)+d(t)η−b(t)δ and q(t)= b(t)+ c(t)+d(t).
Since 0 < δ ¿ 1 and 0 < η ¿ 1, the transition from eq. (1) to eq. (6) is admitted. This

replacement is significant from the computational point of view (El’sgolt’s and Norkin [3]).

2.1 Non polynomial spline
To construct the difference equation of the problem eqs. (6)-(8), the domain [0,1] is divided
into N non overlapping intervals 0= t0 < t1 < t2 < . . .< tN = 1, each of length h. Then, we have
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ti = t0 + ih for i = 0,1, . . . , N . For simplicity, denoteA(ti) = A i , B(ti) = Bi , f (ti) = f i , w(t0) = w0,
w(ti)= wi , w(ti +h)= wi+1, w(ti −h)= wi−1, w′(ti)= w′

i , w′′(ti)= w′′
i , etc.

For each ith segment, the cubic non-polynomial spline function Pi(t) has the form

Pi(t)= ãi + b̃i(t− ti)+ c̃i sinτ(t− ti)+ d̃i cosτ(t− ti), i = 0,1, . . . , N −1 , (9)

where ãi , b̃i , c̃i and d̃i are constants and τ is a free parameter.
Let w(t) be the exact solution and wi be an approximation to w(ti) obtained by the non

polynomial cubic spline Pi(t) passing through the points (ti,wi) and (ti+1,wi+1).
The spline Pi(t) satisfies interpolatory conditions at ti and ti+1, also the continuity of first

derivative at the common nodes (ti,wi). The non-polynomial function P(t) of class C2[A,B]
interpolates w(t) at the grid points ti , for i = 0,1, . . . , N , depends on a parameter τ, and reduces
to an ordinary cubic spline P(t) in [A,B] as τ→ 0.

To derive the expressions for the unknown coefficients of eq. (9) in terms of wi , wi+1, Mi

and Mi+1, define

Pi(ti)= wi, Pi(ti+1)= wi+1 ,

P ′′
i (ti)= Mi, P ′′

i (ti+1)= Mi+1 .

Then by algebraic calculations, we get the following expressions:

ãi = wi + Mi

τ2 , b̃i = wi+1 −wi

h
+ Mi+1 −Mi

τθ
, c̃i = Mi cosθ−Mi+1

τ2 sinθ
, d̃i =−Mi

τ2 ,

where θ = τh, for i = 0,1,2, . . . , N −1.
Using the continuity of the first derivative at (ti,wi), that is P ′

i−1(ti)= P ′
i(ti),we arrived at

the following relation:

αMi+1 +2βMi +αMi−1 = wi+1 −2wi +wi−1

h2 for i = 1,2, . . . , N −1 , (10)

where

α= −1
θ2 + 1

θsinθ
, β= 1

θ2 − cosθ
θsinθ

, M j = w′′(t j), j = i, i±1 and θ = τh .

For our convenience, at the grid points xi , rearranging eq. (1) we obtain:

εw′′
i = Ã(ti)w′

i + B̃(ti)wi + f i ,

where Ã(t)=−p(t), B̃(t)=−q(t).
By using Spline’s second derivatives, we have

εM j = Ã(t j)w′
j(t)+ B̃(t j)w(t j)+ f (t j) for j = i−1, i, i+1 .

Substituting the above equations in eq. (10) and using the following approximations for the first
order derivative of y at the grid points t1, t2, . . . , tN−1

w′
i+1

∼= wi−1 −4wi +3wi+1

2h
, (11)

w′
i−1

∼= −3wi−1 +4wi −wi+1

2h
, (12)

w′
i
∼=

(
1+2ωh2B̃i+1 +ωh[3Ã i+1 + Ã i−1]

2h

)
wi+1 −2ω

[
Ã i+1 + Ã i−1

]
wi
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−
(
1+2ωh2B̃i−1 −ωh[Ã i+1 +3Ã i−1]

2h

)
wi−1 +ωh [ f i+1 − f i−1] . (13)

W get the following three term relation given as:

E iwi−1 +Fiwi +G iwi+1 = Hi for i = 1,2, . . . , N −1 , (14)

where

E i =−ε− 3
2
αÃ i−1h+βÃ ih2ω

[
Ã i+1 +3Ã i−1

]−2ωÃ iβh3B̃i−1 + α

2
Ã i+1h+αB̃i−1h2 −hβÃ i ,

Fi = 2ε+2αÃ i−1h−4βÃ ih2ω
[
Ã i+1 + Ã i−1

]−2αÃ i+1h+2βB̃ih2 ,

G i =−ε− α

2
Ã i−1h+βÃ ih2ω

[
3Ã i+1 + Ã i−1

]+2ωh3βÃ iB̃i+1 + 3
2
αÃ i+1h+αB̃i+1h2 +hβÃ i ,

Hi =−h2 [(
α−2ωβÃ ih

)
f̃ i−1 +2β f i +

(
α+2ωβÃ ih

)
f i+1

]
.

The resulting tri-diagonal system eq. (14) is solved by Thomas algorithm, to get the
approximations y1, y2, . . . , yN−1 of the solution y(t) at t1, t2, . . . , tN−1.

3. Convergence Analysis
Now we consider the convergence analysis of the non-polynomial spline method, described in
this section. Incorporating the boundary conditions we obtain the system of equations in the
matrix form as

(D+ J)Y + R̃+T(h)=O , (15)

where

D = [−ε,2ε,−ε]=



2ε −ε 0 0 . . . 0
−ε 2ε −ε 0 . . . 0
0 −ε 2ε −ε . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . 0 −ε 2ε

 ,

J = [zi,vi,ui]=



v1 u1 0 0 . . . 0
z2 v2 u2 0 . . . 0
0 z3 v3 u3 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . . . . zN−1 vN−1

 ,

zi =−3
2
αÃ i−1h+βÃ ih2ω

[
Ã i+1 +3Ã i−1

]−2ωÃ iβh3B̃i−1 + α

2
Ã i+1hαB̃i−1h2 −hβÃ i ,

vi = 2αÃ i−1h−4βÃ ih2ω
[
Ã i+1 + Ã i−1

]−2αÃ i+1h+2βB̃ih2 ,

ui =−α
2

Ã i−1h+βÃ ih2ω
[
3Ã i+1 + Ã i−1

]+2ωh3βÃ iB̃i+1 + 3
2
αÃ i+1h+αB̃i+1h2 +hβÃ i ,

for i = 1,2, . . . , N −1 ,

R̃ = [
B̃1 + (−ε+ z1)γ0, B̃2, B̃3, . . . , B̃N−1 + (−ε+wN−1)γ1

]
,

B̃i = h2 [(
α−2ωβÃ ih

)
f i−1 +2β f i +

(
α+2ωβÃ ih

)
f i+1

]
, i = 1,2, . . . , N −1
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and W = [W1,W2, . . . ,WN−1]T , T(h) = [T1,T2, . . . ,TN−1]T , O = [0,0, . . . ,0]T are the associated
vectors with eq. (15).

The local truncation error associated with the scheme developed in eq. (14) is

T(h)= [−1+2(α+β)
]
εh2w′′(ti)

+
{[(

4ωε+ 1
3

)
β− 2α

3

]
Ã(xi)w′′′(ti)+ (−1+12α)

ε

12
w(4)(ti)

}
h4 +O(h6)

i.e.,

T(h)=O(h6), for α= 1
12

, β= 5
12

,ω=− 1
20ε

.

Let w = [w1,w2, . . . ,wN−1]T ∼=W which satisfies the equation

(D+ J)w+ R̃ = 0 . (16)

Let e i = wi −Wi , i = 1,2, . . . N −1 be the discretization error so that

E = [e1, e2, . . . , eN−1]T = w−W .

Using eq. (15) and eq. (16), we have the error equation as:

(D+ J)E = T(h) . (17)

Let |Ã(x)| ≤ C1 and |B̃(x)| ≤ C2 where C1, C2 are positive constants. If Ji, j be the (i, j)th element
of J , then

|Ji,i+1| = |ui| ≤ (h(α+β)C1 +h2αC2 +4βωh2C2
1 +2h3βωC1C2), i = 1,2, . . . , N −2 ,

|Ji,i−1| = |zi| ≤ (h(α+β)C1 +h2αC2 +4βωh2C2
1 +2h3βωC1C2), i = 2,3, . . . , N −1 .

Thus for h,

|Ji,i+1| < ε, i = 1,2, . . . , N −2 (18)

and

|Ji,i−1| < ε, i = 2,3, . . . , N −1 . (19)

Hence (D + J) is irreducible. Let Pi be the sum of the elements of the ith row of the matrix
(D+ J), then we have

P̃i = ε+ αh
2

(
3Ã i−1 − Ã i+1

)−hβP̃i +h2 (
αB̃i+1 +2βB̃i

)
−h2βωÃ i

(
Ã i+1 +3Ã i−1

)+2h3βωÃ iB̃i+1, for i = 1 ,

P̃i = h2 (
αB̃i−1 +2βB̃i +αB̃i+1

)+2h3βÃ iω
(
B̃i+1 − B̃i−1

)
, for i = 2,3, . . . , N −2 ,

P̃i = ε+ αh
2

(
Ã i−1 −3Ã i+1

)−hβÃ i +h2 (
αB̃i−1 +2βB̃i

)
−h2βωÃ i

(
Ã i+1 + Ã i−1

)−2h3βωÃ iB̃i−1, for i = N −1 .

Let C1∗ = min
1≤i≤N

|Ã(t)| and C∗
1 = max

1≤i≤N
|Ã(t)|, C2∗ = min

1≤i≤N
|B̃(t)| and C∗

2 = max
1≤i≤N

|B̃(t)|.
Since 0< ε¿ 1 and ε∝O(h), it is verify that for h, (D+ J) is monotone.
Hence (D+ J)−1 exists and (D+ J)−1 ≥ 0.
Thus from eq. (17), we have

‖E‖ ≤ ‖(D+ J)−1‖ ·‖T‖ . (20)
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Let (D+ J)−1
i,k be the (i,k)th element of (D+ J)−1 and we define

‖(D+ J)−1‖ = max
1≤i≤N−1

N−1∑
k=1

(D+ J)−1
i,k and ‖T(h)‖ = max

1≤i≤N−1
|T(h)|. (21)

Since (D+ J)−1
i,k ≥ 0 and

N−1∑
k=1

(D+ J)−1
i,k · P̃k = 1 for i = 1,2,3, . . . , N −1.

Hence

(D+ J)−1
i,k ≤

1
Pi

< 1
h2

[(
α+2β

)
C2∗ −4βωC2

1∗
] , i = 1 , (22)

(D+ J)−1
i,k ≤

1
Pi

< 1
h2

[(
α+2β

)
C2∗ −4βωC2

1∗
] , i = N −1 . (23)

Further
N−1∑
k=1

(D+ J)−1
i,k ≤

1
min2≤i≤N−2 Pi

< 1
h2

(
2

(
α+β)

C2∗
) . (24)

Using the eqs. (22)-(24), from eq. (20), we get

‖E‖ ≤O(h4).

Hence, the method is fourth order convergent for α= 1
12 , β= 5

12 , ω=− 1
20ε on uniform mesh.

4. Numerical Experiments
To demonstrate the proposed method computationally, we consider four boundary value
problems. The maximum absolute errors in the solution are estimated by using EN,ε =
max

0≤i≤N
|w(ti)−wi|, where w(ti) is the exact solution and wi is the computed solution.

Example 1. Consider the differential-difference equation with left end boundary layer

εw′′(t)+w′(t)+2w(t−δ)−3w(t)= 0 with w(0)= 1, −δ≤ t ≤ 0 and w(1)= 1, 1≤ t ≤ 1+η.

Table 1. Maximum errors in the solution of Example 1 for ε= 0.1 with different values of δ

N → 8 32 128 512

δ ↓ Present method

0.00 1.0798e-03 4.0303e-06 1.5642e-08 6.1089e-11

0.05 7.9692e-04 2.9371e-06 1.1431e-08 4.4649e-11

0.09 6.0682e-04 2.2124e-06 8.6762e-09 3.3887e-11

Results in Kadalbajoo and Sharma [8]

0.00 0.09907804 0.03700736 0.00954678 0.00214501

0.05 0.09659609 0.03640566 0.00924661 0.00202998

0.09 0.09277401 0.03556652 0.00895172 0.00192488

Example 2. Consider the equation with left end boundary layer

εw′′(t)+w′(t)−3w(t)+2w(t+η)= 0 with w(0)= 1, −δ≤ t ≤ 0 and w(1)= 1, 1≤ t ≤ 1+η.
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Table 2. Maximum errors in the solution of Example 2 for ε= 0.1 with different values of η

N → 8 32 128 512
η ↓ Present Method

0.00 1.0798e-03 4.0303e-06 1.5642e-08 6.1089e-11
0.05 1.4141e-03 5.3400e-06 2.0819e-08 8.1296e-11
0.09 1.7187e-03 6.5463e-06 2.5726e-08 1.0044e-10

Results in Kadalbajoo and Sharma [8]
0.00 0.09907804 0.03700736 0.00954678 0.00214501
0.05 0.09977501 0.03727087 0.00979659 0.00224472
0.09 0.10031348 0.03723863 0.00996284 0.00458698

Example 3. Consider the problem equation with left end boundary layer

εw′′(t)+w′(t)−2w(t−δ)−5w(t)+w(t+η)= 0 with w(t)= 1, −δ≤ t ≤ 0 and w(t)= 1, 1≤ t ≤ 1+η.

Table 3. Maximum errors in Example 3 for ε= 0.1 with different values of η and δ

N = 8 N = 32 N = 128 N = 512
δ ↓ η= 0.5ε Present method

0.00 3.6277e-03 1.4948e-05 5.7829e-08 2.2590e-10
0.05 4.6884e-03 1.9939e-05 7.6887e-08 3.0022e-10
0.09 5.6439e-03 2.4603e-05 9.4779e-08 3.6991e-10
η ↓ δ= 0.5ε

0.00 4.1398e-03 1.7332e-05 6.6871e-08 2.6136e-10
0.05 4.6884e-03 1.9939e-05 7.6887e-08 3.0022e-10
0.09 5.1541e-03 2.2193e-05 8.5539e-08 3.3386e-10

Results in Kadalbajoo and Sharma [8]
δ ↓ η= 0.5ε

0.00 0.09190267 0.03453494 0.01164358 0.00300463
0.05 0.10233615 0.03823132 0.01295871 0.00335137
0.09 0.11018870 0.04110846 0.01400144 0.00362925
η ↓ δ= 0.5ε

0.00 0.09720079 0.03640446 0.01229476 0.0031786
0.05 0.10233615 0.03823132 0.01295871 0.00335137
0.09 0.10632014 0.03965833 0.01348348 0.00349050

Example 4. Consider the problem with right end boundary layer

εw′′(t)−w′(t)−2w(t−δ)+w(t)= 0 with w(0)= 1, −δ≤ t ≤ 0 and w(1)=−1, 1≤ t ≤ 1+η.

Table 4. Maximum errors in the solution of Example 4 for ε= 0.1 with different values of δ

N → 8 32 128 512
δ ↓ Present method

0.00 2.5312e-03 9.4444e-06 3.6657e-08 1.4317e-10
0.05 1.7367e-03 6.3970e-06 2.4904e-08 9.7252e-11
0.09 1.2459e-03 4.5388e-06 1.7815e-08 6.9587e-11

Results in Kadalbajoo and Sharma [8]
0.00 0.07847490 0.04678972 0.01727912 0.00443086
0.05 0.09222560 0.03828329 0.01487799 0.00380679
0.09 0.10509460 0.03149275 0.01299340 0.00331935
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Example 5. Consider the differential-difference equation with right end boundary layer:

εw′′(t)−w′(t)+w(t)−2w(t+η)= 0 with w(0)= 1, −δ≤ t ≤ 0 and w(1)=−1, 1≤ t ≤ 1+η.

Table 5. Maximum errors in the solution of Example 5 for ε= 0.1 with different values of η

N → 8 32 128 512
η ↓ Present method

0.00 2.5312e-03 9.4444e-06 3.6657e-08 1.4317e-10
0.05 3.5567e-03 1.3428e-05 5.2345e-08 2.0442e-10
0.09 4.5639e-03 1.7380e-05 6.8290e-08 2.6661e-10

Results in Kadalbajoo and Sharma [8]
0.00 0.07847490 0.04678972 0.01727912 0.00443086
0.05 0.06834579 0.05516436 0.01972508 0.00506769
0.09 0.08328237 0.06168267 0.02169662 0.00558451

Example 6. Consider the equation with right end boundary layer:

εw′′(t)−w′(t)−2w(t−δ)+w(t)−2w(t+η)= 0 with w(0)= 1, −δ≤ t ≤ 0 and w(1)=−1, 1≤ t ≤ 1+η.

Table 6. Maximum errors in Example 6 for ε= 0.1 with different values of η and δ

N = 8 N = 32 N = 128 N = 512
δ ↓ η= 0.5ε Present method

0.00 3.7809e-03 1.4605e-05 5.7505e-08 2.2459e-10
0.05 2.8263e-03 1.0743e-05 4.2040e-08 1.6425e-10
0.09 2.1939e-03 8.2661e-06 3.2176e-08 1.2563e-10
η ↓ δ= 0.5ε

0.00 2.0526e-03 7.7156e-05 2.9998e-08 1.1715e-10
0.05 2.8263e-03 1.0743e-05 4.2040e-08 1.6425e-10
0.09 3.5745e-03 1.3707e-05 5.4129e-08 2.1133e-10
δ ↓ η= 0.5ε Results of Kadalbajoo and Sharma [8]

0.00 0.09930002 0.03685072 0.01331683 0.00342882
0.05 0.09997296 0.03218424 0.01167102 0.00299572
0.09 0.10044578 0.02850398 0.01038902 0.00266379
η ↓ δ= 0.5ε

0.00 0.10055269 0.02759534 0.01007834 0.00258299
0.05 0.09997296 0.03218424 0.01167102 0.00299572
0.09 0.09944067 0.03591410 0.01297367 0.00334044

5. Discussions and Conclusion
A difference scheme using non-polynomial spline and nonstandard finite differences is
implemented to solve differential-difference equation having layer behaviour. Initially, the
given problem is minimized by the Taylor’s expansion, to differential equation with layer
structure. Then a tridiagonal difference scheme is constructed using the nonstandard finite
differences in non-polynomial spline. The method is used with various examples of left layer
and right layer, with distinct values of the delay parameter δ, advanced parameter η and the
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perturbation ε. The outcomes of the computations were compared and tabulated. The effect
of the delay and the advanced parameters have been examined via graphs on the problem
solutions. When the SPDDE solution exhibits the layer on the left-end, the effect of delay or
advanced parameters in the layer domain is observed to be negligible, whereas in the outer
region it is significant. The variation of the advanced parameter influences the solution in the
same way that the change in delay has an influence but reverse effect (see Figures 1-5). In layer
region as well as external region, there is an impact when the SPDDEs show right-end layer on
the region with respect to the delay or advanced variations. We also observed that the layer
thickness decreases as the delay parameter increases while the advanced parameter increases
the layer thickness (Figures 6-8). Results show that the proposed scheme is very well suited to
the exact solution.

 

Figure 1. Numerical solution in Example 1 for ε= 0.1 with different values of δ
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Figure 2. Numerical solution in Example 2 for ε= 0.1 with different values of η
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Figure 3. Numerical solution in Example 3for ε= 0.1 with different values of δ

 

Figure 4. Numerical solution in Example 3 for ε= 0.1 with different values of η

  

  

Figure 5. Numerical solution in Example 4 for ε= 0.1 with different values of δ
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Figure 6. Numerical solution in Example 5 for ε= 0.1 with different values of η
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Figure 7. Numerical solution in Example 6 with ε= 0.1 and for different values of η
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Figure 8. Numerical solution in Example 6 with ε= 0.1 and for different values of δ
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