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k-Tuple Total Domination in Supergeneralized Petersen Graphs

Adel P. Kazemi and Behnaz Pahlavsay

Abstract. Total domination number of a graph without isolated vertex is the

minimum cardinality of a total dominating set, that is, a set of vertices such that

every vertex of the graph is adjacent to at least one vertex of the set. Henning

and Kazemi in [4] extended this definition as follows: for any positive integer k,

and any graph G with minimum degree-k, a set D of vertices is a k-tuple total

dominating set of G if each vertex of G is adjacent to at least k vertices in D.

The k-tuple total domination number γ×k,t(G) of G is the minimum cardinality

of a k-tuple total dominating set of G. In this paper, we give some upper bounds

for the k-tuple total domination number of the supergeneralized Petersen graphs.

Also we calculate the exact amount of this number for some of them.

1. Introduction

Let G = (V, E) be a graph with vertex set V of order n and edge set E. A cycle on

n vertices is denoted by Cn. The minimum degree (resp., maximum degree) among

the vertices of G is denoted by δ(G) (resp., ∆(G)) or briefly by δ (resp., ∆).

The cartesian product G�H of two graphs G and H is a graph with the vertex

set V (G�H) = {(v, w) | v ∈ V (G), w ∈ V (H)}, and two vertices (v, w) and (v′, w′)

are adjacent together in G�H if either w = w′ and vv′ ∈ E(G) or v = v′ and

ww′ ∈ E(H).

In [6], Saražin et al defined the supergeneralized Petersen graph that is an

extending of generalized Petersen graph as follows: let m ≥ 2, n ≥ 3 be integers

and l0, l1, . . . , lm−1 ∈ Zn −{0}, where Zn = {0,1,2, . . . , n− 1}. The vertex set of the

graph P(m, n, l0, l1, . . . , lm−1) is Zm× Zn and the edges are defined by (i, j)(i+1, j),

(i, j)(i, j + li), for all i ∈ Zm and j ∈ Zn. The edges of type (i, j)(i + 1, j) will be

called horizontal, while those of type (i, j)(i, j+li) vertical. We will call such a graph

supergeneralized Petersen graph (SGPG). Note that ∆(P(m, n, l0, l1, . . . , lm−1)) ≤ 4,

and P(m, n; 1, . . . , 1) is the Cartesian product Cm �Cn of two cycles; in particular,

the skeleton of the 4-dimensional hypercube is Q4 = C4 �C4 = P(4,4;1,1,1,1).
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To avoid confusion we will pick 0≤ li ≤
n

2
as a representative of {±li}. If n is odd,

then P = P(m, n; l0, . . . , lm−1) is obviously 4-regular, with the exception m = 2,

when the graph is cubic. The same holds when n is even, if li = n/2, for every

i ∈ Zm. On the contrary, if li = n/2 for some i, then P is not regular, unless

li = n/2 for all i ∈ Zn. In this last case the graph P is not connected: it is formed

by n/2 components each isomorphic to Cm �K2.

Domination in graphs is now well studied in graph theory and the literature

on this subject has been surveyed and detailed in the two books by Haynes,

Hedetniemi, and Slater [2], [3]. A set S ⊆ V is a dominating set if each vertex

in V \ S is adjacent to at least one vertex of S, and the minimum cardinality of

a dominating set is the domination number of G and denoted by γ(G). If in the

definition of dominating set we replace V with V \S, we obtain a total dominating

set and similarly the minimum cardinality of a total dominating set is the total

domination number of G and denoted by γt(G).

In [4], Henning and Kazemi initiated a study of k-tuple total domination

in graphs. A subset S of V is a k-tuple total dominating set of G, abbreviated

kTDS, if every vertex v ∈ V has at least k neighbors in S. The k-tuple total

domination number γ×k,t(G) is the minimum cardinality of a kTDS of G. We remark

that γt(G) = γ×1,t(G) and γ×2,t(G) is the same double total domination number.

Obviously γ×k,t(G)≤ γ×(k+1),t(G) for all graphs G with δ(G)≥ k+ 1.

In this paper, we give some upper bounds for the k-tuple total domination

number of the supergeneralized Petersen graphs P(m, n, l0, l1, . . . , lm−1), when

l0 = l1 = . . . = lm−1, and 1 ≤ k ≤ 4. Also we calculate the exact amount of

this number for some of them.

2. Some Bounds

We begin with the following trivial observation about the k-tuple total

domination number of a graph. The proof follow readily from the definitions and

is omitted.

Observation 2.1. Let G be a graph of order n with δ(G)≥ k, and let S be a kTDS

in G. Then

(i) k+ 1≤ γ×k,t(G)≤ n,

(ii) if G is a spanning subgraph of a graph H, then γ×k,t(H)≤ γ×k,t(G),

(iii) if v is a degree-k vertex in G, then NG(v)⊆ S.

Observation 2.1(iii) concludes that γ×k,t(G) = nm, when G = P(m, n; l0, . . . , lm−1)

is 4-regular and k = 4. Therefore in continuance, we consider 1 ≤ k ≤ 3. Now we

give a lower bound that we stated it in [5].

Lemma 2.2. If G is a graph of order n with δ(G)≥ k, then

γ×k,t (G)≥ ⌈kn/∆⌉.
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Proof. Let G = (V, E). Let S be a γ×k,t(G)-set. Each vertex v ∈ S is adjacent to at

least k vertices in S and therefore to at most dG(v)− k vertices outside S. Hence,

|[S, V \ S]| ≤
∑

v∈S

(dG(v)− k) =
∑

v∈S

dG(v)− k|S| ≤ |S|(∆− k).

Since each vertex in V \ S is adjacent to at least k vertices in S, we note that

|[S, V \ S]| ≥ k|V \ S|= k(n− |S|).

Thus, |S|(∆− k) ≥ k(n− |S|), whence γ×k,t(G) = |S| ≥ kn/∆. �

Remark 1. Let P(m, n; l, l, . . . , l) be a SGPG. Let n ≡ r (mod 4l). If n ≡ 0

(mod 4l), then P(m, n, l, l, . . . , l) is formed by l components each isomorphic to

P
�

m, n

l
; 1,1, . . . , 1
�

with the vertex set {(i, t l + j) | 0 ≤ t ≤ n

l
− 1,0 ≤ i ≤ m− 1},

and so

γ×k,t(P(m, n; l, l, . . . , l)) = lγ×k,t

�

P

�

m,
n

l
; 1,1, . . . , 1

��

.

Also if n 6≡ 0 (mod 4l), then G is formed by l ′ components each isomorphic to

P(m, n

l′
; 1,1, . . . , 1) with the vertex set {(i, t l

′

+ j) | 0 ≤ t ≤ n

l′
− 1,0 ≤ i ≤ m− 1},

when l ′ is the greatest common divisor between n and l, and so

γ×k,t(P(m, n; l, l, . . . , l)) = l ′γ×k,t

�

P

�

m,
n

l ′
, 1, 1, . . . , 1

��

.

Therefore for calculating the k-tuple total domination number of P(m, n; l, l, . . . , l)

it suffices to calculate the k-tuple total domination number of P(m, n; 1,1, . . . , 1) =

Cm�Cn, for every integers m and n. The next three propositions give upper

bounds for the k-tuple total domination number of Cm�Cn, where m and n are

two arbitrary integers at least 4. Gravier in [1] gave the upper bound
(m+2)(n+2)

4

for the total domination number of Cm �Cn. Next proposition improves this upper

bound.

Proposition 2.3. Let G = Cm �Cn, where m ≥ n≥ 4, and let s and r be non-negative

integers such that m≡ s (mod 4)and n≡ r (mod 4). Then

γt(G)≤











































































m(n+ 1)

4
if (s, r) = (0,3),

m(n+ r)

4
if (s, r) ∈ {0} × {0,1,2},

(m− s)(n+ 1)

4
+

n− 1

2
if (s, r) ∈ {1,2} × {1},

(m− 3)(n+ 1)

4
+

3(n− 1)

4
+ 1 if (s, r) = (3,1),

(m− 2)(n+ 1)

4
+ n− 1 if (s, r) = (2,2),

(m+ 1)(n+ 1)

4
if (s, r) ∈ {3} × {2,3}.
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Proof. Let

S0 =

�

(4i, 4 j), (4i + 3,4 j), (4i + 2,4 j + 2), (4i + 1,4 j + 2)

| 0≤ i ≤
m− s

4
− 1,0 ≤ j ≤

n− r

4
− 1

�

,

S1 =

�

(4i, n− 1), (4i + 3, n− 1) | 0≤ i ≤
m− s

4
− 1

�

,

S2 =

�

(4i, n− 2), (4i + 3, n− 2), (4i + 1, n− 1), (4i + 2, n− 1) | 0≤ i ≤
m− s

4
− 1

�

,

S3 =

�

(4i, n− 3), (4i + 3, n− 3), (4i + 1, n− 1), (4i + 2, n− 1) | 0≤ i ≤
m− s

4
− 1

�

,

S1,1 =

�

(m− 1,4 j + 2), (m− 1,4 j + 3) | 0≤ j ≤
n− 1

4
− 1

�

,

S2,1 =

�

(m− 1,4 j + 2), (m− 2,4 j + 2) | 0≤ j ≤
n− 1

4
− 1

�

,

S3,1 =

�

(m− 1,4 j), (m− 2,4 j + 2), (m− 3,4 j + 2) |

0≤ j ≤
n− 1

4
− 1} ∪ {(m− 1, n− 1)

�

,

S2,2 =

�

(m− 1,4 j), (m− 1,4 j + 3), (m− 2,4 j),

(m− 2,4 j + 3) | 0≤ j ≤
n− 2

4
− 1

�

∪ {(m− 2, n− 2)},

S3,2 =

�

(m− 1,4 j), (m− 1,4 j + 2), (m− 2,4 j + 2), (m− 3,4 j) | 0≤ j ≤
n− 2

4
− 1

�

∪ {(m− 1, n− 1), (m− 1, n− 2), (m− 3, n− 2)},

S3,3 =

�

(m− 1,4 j), (m− 1,4 j + 2), (m− 2,4 j + 2), (m− 3,4 j) | 0≤ j ≤
n− 3

4
− 1

�

∪ {(m− 1, n− 1), (m− 1, n− 3), (m− 2, n− 1), (m− 3, n− 3)}.

Since obviously S0∪ Sr ∪ Ss,r when 0 < r ≤ s ≤ 3, and S0∪ Sr when 0≤ r ≤ 3 and

s = 0, are total dominating sets of G with the wanted cardinality, then our proof

will be completed. �

Proposition 2.4. Let G = Cm �Cn, where m ≥ n≥ 4, and let s and r be non-negative

integers such that m≡ s (mod 4) and n≡ r (mod 4). Then
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γ×2,t(G)≤



























































































mn

2
if (s, r) = (0,0)

m(n+ 1)

2
if (s, r) ∈ {0} × {1,2,3},

(m− 1)(n+ 1)

2
+ n− 1 if (s, r) = (1,1),

(m− 2)(n+ 1)

2
+

3(n− r)

2
if (s, r) ∈ {2} × {1,2},

(m− 3)(n+ 1)

2
+ 2n− 2 if (s, r) = (3,1),

(m− 3)(n+ 1)

2
+

5n− 6

2
if (s, r) = (3,2),

(m− 3)(n+ 1)

2
+

9n− 7

4
if (s, r) = (3,3).

Proof. Let

S0 =

�

(4i, 4 j), (4i, 4 j + 3), (4i + 1,4 j + 1), (4i + 1,4 j + 2),

(4i + 2,4 j + 1), (4i + 2,4 j + 2), (4i + 3,4 j),

(4i + 3,4 j + 3) | 0≤ i ≤
m− s

4
− 1,0 ≤ j ≤

n− r

4
− 1

�

,

S1 = {(i, n− 1) | 0≤ i ≤ m− s− 1},

S2 =

�

(4i, n− 2), (4i + 3, n− 2) | 0≤ i ≤
m− s

4
− 1

�

∪ {(i, n− 1) | 0≤ i ≤ m− s− 1},

S3 =

�

(4i, n− 3), (4i + 3, n− 3), (4i + 1, n− 2), (4i + 2, n− 2) | 0≤ i ≤
m− s

4
− 1

�

∪ {(i, n− 1) | 0≤ i ≤ m− s− 1},

S1,1 = {(m− 1, j) | 0≤ j ≤ n− 2},

S2,1 = {(m− 1, j) | 0≤ j ≤ n− 2} ∪

�

(m− 2,4 j), (m− 2,4 j + 3) | 0≤ j ≤
n− 1

4
− 1

�

,

S3,1 = {(m− 2, j) | 0≤ j ≤ n− 2}

∪

�

(i, 4 j), (i, 4 j + 3) | 0≤ j ≤
n− 1

4
− 1, i ∈ {m− 3, m− 1}

�

,

S2,2 = {(m− 1, j) | 0≤ j ≤ n− 3}

∪

�

(m− 2,4 j), (m− 2,4 j + 3) | 0≤ j ≤
n− 2

4
− 1

�

,
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S3,2 =

�

(m− 3,4 j), (m− 3,4 j + 3) | 0≤ j ≤
n− 2

4
− 1

�

∪ {(i, j) | m− 2≤ i ≤ m− 1,0 ≤ j ≤ n− 3}

∪ {(m− 2, n− 2), (m− 2, n− 1)},

S3,3 =

�

(m− 3,4 j), (m− 3,4 j + 3) | 0≤ j ≤
n− 3

4
− 1

�

∪

{(m− 3, n− 3)} ∪ {(m− 2, j) | 0≤ j ≤ n− 1}

∪ {(m− 1, j) | 0≤ j ≤ n− 1} − {(m− 1, n− 2), (m− 1, n− 1)}

∪

�

(m− 2,4 j + 3) | 0≤ j ≤
n− 3

4
− 1

�

.

Since obviously S0 ∪ Sr ∪ Ss,r when 0 < r ≤ s ≤ 3, and S0∪ Sr when 0 ≤ r ≤ 3 and

s = 0, are total dominating sets of G with the wanted cardinality, then our proof

will be completed. �

Proposition 2.5. Let G = Cm �Cn, where m ≥ n≥ 4, and let s and r be non-negative

integers such that m≡ s (mod 4) and n≡ r (mod 4). Then

γ×3,t(G)≤


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
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
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














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

















































m(3n+ 1)

4
if (s, r) = (0,3),

m(3n+ r)

4
if (s, r) ∈ {0} × {0,1,2},

(m− 1)(3n+ 1)

4
+

5(n− 1)

4
if (s, r) = (1,1),

(m− s)(3n+ 1)

4
+ sn− s if (s, r) ∈ {2,3} × {1},

(m− 2)(3n+ 1)

4
+ 2n if (s, r) = (2,2),

(m− 3)(3n+ 1)

4
−

n+ 6

4
+ 3n if (s, r) = (3,2),

(m− 3)(3n+ 1)

4
−

n+ 6

4
+ 3n if (s, r) = (3,3),

Proof. Let

S0 =

�

(4i, 4 j), (4i + 3,4 j), (4i + 2,4 j + 2), (4i + 1,4 j + 2)

| 0≤ i ≤
m− s

4
− 1,0 ≤ j ≤

n− r

4
− 1

�

∪

�

(i, 2 j + 1) | 0≤ j ≤
n− r

2
− 1,0≤ i ≤ m− s− 1

�

,
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S1 = {(i, n− 1) | 0≤ i ≤ m− s− 1},

S2 = {(i, n− 1), (i, n− 2) | 0≤ i ≤ m− s− 1},

S3 = {(i, n− 1), (i, n− 2) | 0≤ i ≤ m− s− 1}∪

�

(4i, n− 3), (4i + 3, n− 3) | 0≤ i ≤
m− s

4
− 1

�

,

S1,1 =

�

(m− 1, j) | 0≤ j ≤ n− 2} ∪ {(m− 2,4 j + 2) | 0≤ j ≤
n− 1

4
− 1

�

,

S2,1 = {(m− 1, j), (m− 2, j) | 0≤ j ≤ n− 2},

S3,1 = {(m− 1, j), (m− 2, j), (m− 3, j) | 0≤ j ≤ n− 2},

S2,2 = {(m− 1, j), (m− 2, j) | 0≤ j ≤ n− 1},

S3,2 = {(m− 1, j), (m− 2, j), (m− 3, j) | 0≤ j ≤ n− 1}−

�

(m− 2,4 j + 1) | 0≤ j ≤
n− 2

4
− 1

�

∪ {(m− 3, n− 2), (m− 2, n− 2)},

S3,3 = {(m− 1, j), (m− 2, j), (m− 3, j) | 0≤ j ≤ n− 1}−

�

(m− 2,4 j + 1) | 0≤ j ≤
n− 3

4
− 1

�

∪ {(m− 3, n− 3), (m− 2, n− 3)}.

Since obviously S0∪ Sr ∪ Ss,r when 0 < r ≤ s ≤ 3, and S0∪ Sr when 0≤ r ≤ 3 and

s = 0, are total dominating sets of G with the wanted cardinality, then our proof

will be completed. �

By the last three propositions and the previous Remark, we can conclude the

next three results.

Theorem 2.6. Let G = P(m, n; l, l, . . . l) be a SGPG, where m≥ n≥ 4, and let s and

r be non-negative integers such that m ≡ s (mod 4) and n≡ 0 (mod 4l). Then

γt(G)≤



































































m(n+ l)

4
if (s, r) = (0,3),

m(n+ r l)

4
if (s, r) ∈ {0} × {0,1,2},

(m− s)(n+ l)

4
+

n− l

2
if (s, r) ∈ {1,2} × {1},

(m− 3)(n+ l)

4
+ l if (s, r) = (3,1),

(m− 2)(n+ l)

4
+ n− l if (s, r) = (2,2),

(m+ 1)(n+ l)

4
if (s, r) ∈ {3} × {2,3}.
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and if n 6≡ 0 (mod 4l), such that l ′ is the greatest common divisor between n and l,

then

γt(G)≤































































m(n+ l ′)

4
if (s, r) = (0, 3),

m(n+ r l ′)

4
if (s, r) ∈ {0} × {0, 1, 2},

(m− s)(n+ l ′)

4
+

n− l ′

2
if (s, r) ∈ {1, 2} × {1},

(m− 3)(n+ l ′)

4
+ l ′ if (s, r) = (3, 1),

(m− 2)(n+ l ′)

4
+ n− l ′ if (s, r) = (2, 2),

(m+ 1)(n+ l ′)

4
if (s, r) ∈ {3} × {2, 3}.

Theorem 2.7. Let G = P(m, n; l, l, . . . l) be a SGPG, where m≥ n≥ 4, and let s and

r be non-negative integers such that m ≡ s (mod 4) and n≡ 0 (mod 4l). Then

γ×2,t(G)≤











































































mn

2
if (s, r) = (0, 0),

m(n+ l)

2
if (s, r) ∈ {0} × {1, 2, 3},

(m− 1)(n+ l)

2
+ n− l if (s, r) = (1, 1),

(m− 2)(n+ l)

2
+

3(n− r l)

2
if (s, r) ∈ {2} × {1, 2},

(m− 3)(n+ l)

2
+ 2n− 2l if (s, r) = (3, 1),

(m− 3)(n+ l)

2
+

5n− 6l

2
if (s, r) = (3, 2),

(m− 3)(n+ l)

2
+

9n− 7l

4
if (s, r) = (3, 3).

and if n 6≡ 0 (mod 4l), such that l ′ is the greatest common divisor between n and l,

then

γ×2,t(G)≤











































































mn

2
if (s, r) = (0, 0),

m(n+ l ′)

2
if (s, r) ∈ {0} × {1, 2, 3},

(m− 1)(n+ l ′)

2
+ n− l ′ if (s, r) = (1, 1),

(m− 2)(n+ l ′)

2
+

3(n− r l ′)

2
if (s, r) ∈ {2} × {1, 2},

(m− 3)(n+ l ′)

2
+ 2n− 2l ′ if (s, r) = (3, 1),

(m− 3)(n+ l ′)

2
+

5n− 6l ′

2
if (s, r) = (3, 2),

(m− 3)(n+ l ′)

2
+

9n− 7l ′

4
if (s, r) = (3, 3).
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Theorem 2.8. Let G = P(m, n; l, l, . . . l) be a SGPG, where m≥ n≥ 4, and let s and

r be non-negative integers such that m ≡ s (mod 4) and n≡ 0 (mod 4l). Then

γ×3,t(G)≤



























































































m(3n+ l)

4
if (s, r) = (0,3),

m(3n+ r l)

4
if (s, r) ∈ {0} × {0,1,2},

(m− 1)(3n+ l)

4
+

5n− 5l

4
if (s, r) = (1,1),

(m− s)(3n+ l)

4
+ sn− sl if (s, r) ∈ {2,3} × {1},

(m− 2)(3n+ l)

4
+ 2n if (s, r) = (2,2),

(m− 3)(3n+ l)

4
−

n+ 6l

4
+ 3n if (s, r) = (3,2),

(m− 3)(3n+ l)

4
−

n+ 6l

4
+ 3n if (s, r) = (3,3).

and if n 6≡ 0 (mod 4l), such that l ′ is the greatest common divisor between n and l,

then

γ×3,t(G)≤



























































































m(3n+ l ′)

4
if (s, r) = (0,3),

m(3n+ r l ′)

4
if (s, r) ∈ {0} × {0,1,2},

(m− 1)(3n+ l ′)

4
+

5n− 5l ′

4
if (s, r) = (1,1),

(m− s)(3n+ l ′)

4
+ sn− sl ′ if (s, r) ∈ {2,3} × {1},

(m− 2)(3n+ l ′)

4
+ 2n if (s, r) = (2,2),

(m− 3)(3n+ l ′)

4
−

n+ 6l ′

4
+ 3n if (s, r) = (3,2),

(m− 3)(3n+ l ′)

4
−

n+ 6l ′

4
+ 3n if (s, r) = (3,3).

3. Sharp Bounds

By Lemma 2.2 and the last three theorems and the previous Remark, we can

conclude the next two results.

Theorem 3.1. Let 1≤ k ≤ 4. Let G = P(m, n; l, l, . . . l) be a SGPG, where m≥ n≥ 4,

and let s and r be non-negative integers such that m ≡ 0 (mod 4) and n ≡ 0

(mod 4l). Then

γ×k,t(G) =
kmn

4
.
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Since in every cases of the following theorem P(m, n, l0, l1, . . . , lm−1) is 3-regular,

then Observation 1(iii) follows the next result.

Theorem 3.2. Let G = P(m, n; l0, l1, . . . , lm−1) be a SGPG. If either n is odd and

m = 2 or n is even and li =
n

2
, for at least m− 2 indices i, then

γ×3,t(G) = mn .
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