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1. Introduction
As PDEs of fractional order plays an important role in modelling for the numerous processes
and systems in various scientific research areas such as applied mathematics, physics chemistry
etc., the interest of this topic is increasing enourmously. Since the fractional derivative is
non-local, the model with fractional derivative for physical problems turns out to be the best
choice to analyze the behaviour of the complex non linear processes. That is why attracts
increasing number of researchers. The derivatives in the sense of Caputo is one of the most
common one since mathematical models with Caputo derivatives gives better results compare

http://doi.org/10.26713/cma.v10i4.1290 
https://orcid.org/0000-0002-8214-5099
https://orcid.org/0000-0003-3425-1812


866 The Analytic Solution of Time-Space Fractional Diffusion Equation. . . : S. Çetinkaya and A. Demir

to the analysis of ones including other fractional derivatives. In literature increasing number
of studies can be found supporting this conclusion ([1], [2],[3], [4], [5], [6], [7], [8], [11], [10],
[11], [12], [13]). Moreover, the Caputo derivative of constant is zero which is not hold by many
fractional derivatives. The solutions of fractional PDEs and ODEs are determined in terms of
Mittag-Leffler function.

2. Preliminary Results
In this section, we recall fundamental definition and well known results about fractional
derivative in Caputo sense.

Definition 1. The qth order fractional derivative of u(t) in Caputo sense is defined as

Dqu(t)= 1
Γ(n− q)

∫ t

t0

(t− s)n−q−1u(n)(s)ds, t ∈ [t0, t0 +T], (1)

where u(n) (t) = dnu
dtn , n−1 < q < n. Note that Caputo fractional derivative is equal to integer

order derivative when the order of the derivative is integer.

Definition 2. If 0< q < 1, the qth order Caputo fractional derivative is defined as

Dqu (t)= 1
Γ (1− q)

∫ t

t0

(t− s)−qu′(s)ds, t ∈ [t0, t0 +T]. (2)

The two-parameter Mittag–Leffler function which is taken into account in eigenvalue
problem, is given by

Eα,β
(
λ(t− t0)α

)= ∞∑
k=0

(λ(t− t0)α)k

Γ
(
αk+β

) , α,β> 0 (3)

including constant λ. Especially, for t0 = 0, α=β= q, we have

Eα,β
(
λtq)= ∞∑

k=0

(λtq)k

Γ (qk+ q)
, q > 0. (4)

Mittag-Leffler function coincides with exponential function i.e., E1,1 (λt) = eλt for q = 1 (for
details see [14,15]).

Via the Mittag-Leffler function of two parameters, the following significant functions are
defined as

sinq(µtq)= Eq,1(iµtq)−Eq,1(−iµtq)
2i

=
∞∑

k=0

(−1)k(µtq)
2k+1

Γ((2k+1)q+1)
(5)

and

cosq(µtq)= Eq,1(iµtq)+Eq,1(−iµtq)
2

=
∞∑

k=0

(−1)k(µtq)
2k

Γ (2kq+1)
. (6)

Note that for q = 1 these functions are usual trigonometric functions sin(µt) and cos(µt).
In this study, we deal with the following initial boundary value problem involving time and

space-fractional PDE:

Dα
t u(x, t;α,β)= D2β

x u(x, t;α,β)+BDβ
x u(x, t;α,β)−Cu(x, t;α,β),

0<α< 1, 1< 2β< 2, 0≤ x ≤ l, 0≤ t ≤ T, B,C ∈R (7)

Communications in Mathematics and Applications, Vol. 10, No. 4, pp. 865–873, 2019



The Analytic Solution of Time-Space Fractional Diffusion Equation. . . : S. Çetinkaya and A. Demir 867

u(0, t)= u (l, t; )= 0, 0≤ t ≤ T (8)

u (x,0)= f (x)e−
B
2 x, 0≤ x ≤ l (9)

2.1 Inner product with weighted function
Let V be a vector space, produced of all linear combinations of sinβ

(
µ

( x
b−a

)β)
Eβ,1

(−B
2 xβ

)
and

cosβ
(
µ

( x
b−a

)β)
Eβ,1

(−B
2 xβ

)
for fixed β where B ∈ R is fixed, 0 < β≤ 1 and µ ∈ R on the interval

I = [a,b], i.e., V = span
{
sinβ

(
µ

( x
b−a

)β)
Eβ,1

(−B
2 xβ

)
,cosβ

(
µ

( x
b−a

)β)
Eβ,1

(−B
2 xβ

)}
.

Let T : V → span
{
sin

( µx
b−a

)
e−

B
2 x,cos

( µx
b−a

)
e−

B
2 x

}
be a linear transformation which is one-to-

one and onto. Thus it has its inverse transformation T−1. The mapping 〈•,•〉 : V ×V → R is
defined as

〈u(x;β),v(x;β)〉 = T−1
∫

Tu(x;β).Tv(x;β)ρ(x)dx)
∣∣b
x=a , (10)

where Tu(x;β)= u(x;1), Tv(x;β)= v(x;1) and ρ(x)= eBx.

3. Main Results
By means of separation of variables method. The generalized solution of above problem is
constructed in analytical form. Thus a solution of problem (7)-(9) have the following form:

u(x, t;α,β)= X (x;β)T(t;α,β), (11)

where 0≤ x ≤ l, 0≤ t ≤ T .
Note that the functions X and T depend on orders of fractional derivatives with respect to x

and t. Plugging (11) into (7) and arranging it, we have

Dα
t (T(t;α,β))
T(t;α,β)

+C = D2β
x (X (x;β))+BDβ

x (X (x;β))
X (x;β)

=−λ(β) . (12)

Note that the value of λ varies based on β. Equation (12) produces two fractional differential
equations with respect to time and space. The first fractional differential equation is obtained
by taking the equation on the right hand side of Eq. (12). Hence with boundary conditions (8),
we have the following problem:

D2β
x (X (x;β))+BDβ

x (X (x;β))+λ(β)X (x;β)= 0, (13)

X (0;β)= X (l;β)= 0 . (14)

The solution of eigenvalue problem (13)-(14) is accomplished by making use of the Mittag-
Leffler function of the following form:

X (x;β)= Eβ,1(rxβ) (15)

Hence the characteristic equation is computed in the following form:

r2 +Br+λ(β)= 0. (16)

Case 1. If B2 −4λ(β)> 0, the characteristic equation have two real and distinct solutions r1, r2

leading to the general solution of the eigenvalue problem (13)-(14) having the following form:

X (x;β)= c1Eβ,1(r1xβ)+ c2Eβ,1(r2xβ) .
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By making use of the first boundary condition, we have

X (0;β)= c1 + c2 = 0=⇒ c2 =−c1 . (17)

Hence the solution becomes

X (x;β)= c1(Eβ,1(r1xβ)−Eβ,1(r2xβ)). (18)

Similarly, last boundary condition leads to

X (l;β)= c1(Eβ,1(r1lβ)−Eβ,1(r2lβ))= 0 (19)

which implies that

Eβ,1(r1lβ) 6= Eβ,1(r2lβ). (20)

Thus

c1 = 0 (21)

which means that there is no solution for the case B2 −4λ(β)> 0.

Case 2. B2 −4λ(β)= 0, the characteristic equation have two coincident roots r1 = r2, leading to
the general solution of the eigenvalue problem (13)-(14) having the following form:

X (x;β)= c1Eβ,1(r1xβ)+ c2
xβ

β
Eβ,1(r1xβ) . (22)

By making use of the first boundary condition, we have

X (0)= c1 = 0 (23)

Hence the solution becomes

X (x;β)= c2
xβ

β
Eβ,1(r1xβ) . (24)

Similarly, second boundary condition leads to

X (l)= c2
lβ

β
Eβ,1(r1lβ)=⇒ c2 = 0 (25)

which leads to X (x;β) = 0 which means that there is no solution for B2 −4λ(β) = 0 as in the
previous case.

Case 3: B2 −4λ(β) < 0, the characteristic equation have two complex roots −B
2 ∓ i

p
4λ(β)−B2

2
leading to the general solution of the eigenvalue problem (13)-(14) having the following form:

X (x;β)= Eβ,1

(
−B

2
xβ

)(
c1 cosβ

(√
4λ(β)−B2

2
xβ

)
+ ic2 sinβ

(√
4λ(β)−B2

2
xβ

))
. (26)

By making use of the first boundary condition, we have

X (0)= c1 = 0 . (27)

Hence the solution becomes

X (x;β)= Eβ,1

(
−B

2
xβ

)
ic2 sinβ

(√
4λ(β)−B2

2
xβ

)
. (28)

Similarly, second boundary condition leads to

X (l)= Eβ,1

(
−B

2
lβ

)
ic2 sinβ

(√
4λ(β)−B2

2
lβ

)
= 0 (29)
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which implies that

sinβ

(√
4λ(β)−B2

2
lβ

)
= 0. (30)

Let wn(β) =
p

4λ(β)−B2

2 lβ. Hence the eigenvalues can be represented in terms of wn(β) as
follows:

λn(β)= 4w2
n(β)+ (Blβ)2

(2lβ)2 , 0< w1(β)< w2(β)< w3(β)< . . . . (31)

Thus the solution of the eigenvalue problem is represented in the following form:

Xn(x;β)= cn sinβ

(
wn(β)

( x
l

)β)
Eβ,1

(
−B

2
xβ

)
, n = 1,2,3, . . . . (32)

The equation on the left of (12) for each eigenvalue λn(β) gives the following fractional
differential equation:

Dα
t (T(t;α,β))
T(t;α,β)

=−(C+λ(β)) . (33)

By using the similar calculations the solution of (33) is determined in the following form:

Tn(t;α,β)= k1Eα,1(−(C+λn(β))tα)

= k1Eα,1

(
−

(
C+ 4w2

n(β)+ (Blβ)2

(2lβ)2

)
tα

)
, n = 1,2,3, . . . . (34)

For each eigenvalue λn(β), we obtain the following solution:

un(x, t;α,β)= Xn(x;β)Tn
(
t;α,β

)
= dn sinβ

(
wn(β)

( x
l

)β)
Eβ,1

(
−B

2
xβ

)
Eα,1

(
−

(
C+ 4w2

n(β)+ (
Blβ

)2(
2lβ

)2

)
tα

)
(35)

and hence we have the following sum:

u(x, t;α,β)=
∞∑

n=1
dn sinβ

(
wn(β)

( x
l

)β)
Eβ,1

(
−B

2
xβ

)
Eα,1

(
−

(
C+ 4w2

n(β)+ (
Blβ

)2(
2lβ

)2

)
tα

)
(36)

which satisfy both the fractional equation (7) and boundary condition (8).
In order to establish the solution which satisfies the initial condition (9), the inner product

defined in (10) is used. In (36), replacing t by 0 and using the initial condition (10), we have

u (x,0)= f (x)e−
B
2 x =

∞∑
n=1

dn sinβ

(
wn(β)

( x
l

)β)
Eβ,1

(
−B

2
xβ

)
(37)

=⇒ dn = 2
l

〈
sinβ

(
wn(β)

( x
l

)β)
Eβ,1

(
−B

2
xβ

)
, f (x)e−

B
2 x

〉
= 2

l
T−1

(∫
T

[
{sinβ

(
wn(β)

( x
l

)β)
Eβ,1

(
−B

2
xβ

)]
f (x)e−

B
2 xρ(x)dx

)∣∣∣∣x=l

x=0

= 2
l

T−1
(∫

T
[
sinβ

(
wn(β)

( x
l

)β)
Eβ,1

(
−B

2
xβ

)]
f (x)e−

B
2 xeBxdx

)∣∣∣∣x=l

x=0

= 2
l

T−1
(∫ [

sin
(nπx

l

)
e−

B
2 x

]
f (x)e−

B
2 xeBxdx

)∣∣∣∣x=l

x=0
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Via the inner product (10) we obtain the coefficients dn for n = 1,2,3, . . . as follows:

dn = 2
l

T−1
(∫ [

sin
(nπx

l

)
f (x)

]
dx

)∣∣∣∣x=l

x=0
,n = 1,2,3, . . . (38)

4. Illustrative Example
In this section, we first consider the following initial boundary value problem:

ut = uxx +ux −u,0≤ x ≤ 2, t ≥ 0

u(0, t)= 0, u (2, t)= 0, t ≥ 0 (39)

u (x,0)=−sin(πx) e−
1
2 x0≤ x ≤ 2

which has the solution in the following form:

u(x, t)=−sin(πx) e−
1
2 xe−

(
π2+ 5

4
)
t. (40)

Now, let us take the following fractional heat-like problem into consideration:

Dα
t u(x, t)= D2β

x u(x, t)+Dβ
x u(x, t)−u(x, t), 0<α< 1, 1< 2β< 2,0≤ x ≤ 1, 0≤ t ≤ T (41)

u(0, t)= u (2, t)= 0, 0≤ t ≤ T (42)

u (x,0)= sin(πx)e−
1
2 x, 0≤ x ≤ 1 . (43)

Applying separation of the variables to (41) leads to the equation

Dα
t (T(t;α,β))
T(t;α,β)

+1= D2β
x (X (x;β))+Dβ

x (X (x;β))
X (x;β)

=−λ(β) . (44)

Equation (44) produces two fractional differential equations with respect to time and space.
The first fractional differential equation is obtained by taking the equation on the right hand
side of eq. (44). Hence with boundary conditions (42), we have the following problem:

D2β
x (X (x;β))+Dβ

x (X (x;β))+λ(β)X (x;β)= 0 , (45)

X (0)= 0, X (2)= 0 . (46)

Using the Mittag-Leffler function X (x;β) = Eβ,1(rxβ) we obtain the following characteristic
equation r2 + r+λ(β)= 0. Same as the problem (13)-(14). The solution becomes as follows:

X (x;β)= Eβ,1

(
−1

2
xβ

)(
c1 cosβ

(√
4λ(β)−1

2
xβ

)
+ ic2 sinβ

(√
4λ(β)−1

2
xβ

))
. (47)

By making use of the first boundary condition we have

X (0;β)= 0= c1 . (48)

Hence the solution becomes

X (x;β)= Eβ,1

(
−1

2
xβ

)
ic2 sinβ

(√
4λ(β)−1

2
xβ

)
. (49)

Similarly, second boundary condition leads to

X (1;β)= 0= Eβ,1

(
−1

2
2β

)
ic2 sinβ

(√
4λ(β)−1

2
2β

)
(50)
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which implies that

{sinβ

(√
4λ(β)−1

2
2β

)
= 0 . (51)

Let wn(β) =
p

4λn(β)−1
2 2β. The solutions of (44) can be denoted by means of wn(β) which are

eigenvalues of the problem (46)-(47), as follows:

λn(β)= 4w2
n(β)+22β

22β+2 , 0< w1(β)< w2(β)< w3(β)< . . . . (52)

As a result

Xn(x;β)= cn sinβ

(
wn(β)

( x
2

)β)
Eβ,1

(
−1

2
xβ

)
(53)

represents the solution of the eigenvalue problem.
The equation on the left of (44) for each eigenvalue λn(β) gives the following fractional

differential equation:

Dα
t (Tn(t;α,β))+

(
4w2

n(β)+22β

22β+2 +1

)
Tn(t;α,β)= 0 (54)

which has the following solutions

Tn(t;α,β)= k1Eα,1

(
−

(
1+ 4w2

n(β)+22β

22β+2

)
tα

)
, n = 1,2,3, . . . . (55)

As a result the specific solutions of problem (41)-(43) can be written as

un(x, t;α,β)= dn sinβ

(
wn(β)

( x
2

)β)
Eβ,1

(
−1

2
xβ

)
Eα,1

(
−

(
1+ 4w2

n(β)+22β

22β+2

)
tα

)
(56)

which leads to following general solution of problem (41)-(43)

u(x, t;α,β)=
∞∑

n=1
dn sinβ

(
wn(β)

( x
2

)β)
Eβ,1

(
−1

2
xβ

)
Eα,1

(
−

(
1+ 4w2

n(β)+22β

22β+2

)
tα

)
. (57)

Note that the general solution (57) satisfy both boundary conditions (42) and the fractional
equation (41).

By making use of the inner product defined in (10), we determine the coefficients dn in such
a way that the general solution (57) satisfies the initial condition (43). Plugging t = 0 in to the
general solution (57) and making equal to the initial condition (43) we have

u (x,0)=−sin(πx) e−
1
2 x =

∞∑
n=1

dn sinβ

(
wn(β)

( x
2

)β)
Eβ,1

(
−1

2
xβ

)
. (58)

Via the inner product we obtain the coefficients dn for n = 1,2,3, . . . as follows:

dn = 2
2

T−1
(∫

T
[
sinβ

(
wn(β)

( x
2

)β)
Eβ,1

(
−1

2
xβ

)]
(−sin(πx))e−

1
2 xρ(x)dx

)∣∣∣∣x=2

x=0

= T−1
(∫ [

sin
(nπx

2

)
e−

1
2 x

]
(−sin(πx))e−

1
2 xexdx

)∣∣∣∣x=2

x=0

= T−1
(∫

sin
(nπx

2

)
(−sin(πx))dx

)∣∣∣∣x=2

x=0
.

Thus dn = 0 for n 6= 2.
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For n = 2, we get

d2 = T−1
(
−

∫
sin2(πx)dx

)∣∣∣∣x=2

x=0

= T−1
(
−1

2

(
x+ sin(2πx)

4π

))∣∣∣∣x=2

x=0

= −1
2

xβ+
sinβ

(
w4(β)

( x
2

)β)
w4(β)

∣∣∣∣∣∣
x=2

x=0

=−2β−1 . (59)

Thus

u(x, t;α,β)=−2β−1 sinβ

(
w2(β)

( x
2

)β)
Eβ,1

(
−1

2
xβ

)
Eα,1

(
−

(
1+ 4w2

2(β)+22β

22β+2

)
tα

)
. (60)

It is important to note that plugging α = β = 1 in to the solution (60) gives the solution (40)
which confirm the accuracy of the method we apply.

5. Conclusion
In this research, the analytic solution of initial boundary value problem with Dirichlet boundary
conditions in one dimension is constructed. By making use of separation of variables the solution
is formed in the form of a Fourier series with respect to the eigenfunctions of a corresponding
Sturm-Liouville eigenvalue problem including fractional derivative in Caputo sense. Because of
the structure of the solution the inner product with weighted function is utilized which allows
us to determine the coefficients in the series form of the solution without any difficulty.
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