
Communications in Mathematics and Applications
Vol. 10, No. 3, pp. 541–560, 2019
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v10i3.1269

Research Article

A Deep One-Pass Learning based on Pre-Training
Weights for Smartphone-Based Recognition of
Human Activities and Postural Transitions
Setthanun Thongsuwan 1,,*, Praveen Agarwal2, and Saichon Jaiyen3,,*
1,3Advanced Artificial Intelligence (AAI) Research Laboratory, Department of Computer Science,

King Mongkuts Institute of Technology Ladkrabang, Bangkok 10520, Thailand
2Department of Mathematics, Anand International College of Engineering, Jaipur 303012, India
*Corresponding authors: 1tsetthanun@gmail.com, 3saichon.ja@kmitl.ac.th

Abstract. We describe a new deep learning model – Deep One-Pass Learning (DOPL) for Smartphone-
Based Recognition of Human Activities and Postural Transitions based on the Pre-Trained Weights,
DOPL consists of several stacked convolutional layers to learn the features of the input and is able to
learn features automatically, followed by the Extreme gradient boosting (XGBoost) as the last layer
for predicting the class labels. DOPL is much faster in the training phase, because the input weights
are optimal weights from the Pre-Trained weights module and it does not have to re-adjust weights
repeatedly. Further, we replaced the final fully connected layer with XGBoost to increase predictive
efficiency. In the worst case, our model with demonstrated an accuracy of 99.2% for the smartphone
sensors database data, which was significantly better than CNN or XGBoost alone as well as several
other models assessed.

Keywords. Human activity recognition; Machine learning; Deep learning; Convolutional neural
network; Feature learning; Classification; Extreme gradient boosting; XGBoost; Pre-trained weights

MSC. 68T10

Received: July 5, 2019 Accepted: July 18, 2019

Copyright © 2019 Setthanun Thongsuwan, Praveen Agarwal and Saichon Jaiyen. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction
An attempt to recognize patterns of human behavior is a starting point for many research
areas: it can lead to societal benefits and contribute to the quality of human life in areas
such as healthcare [31, 48] and various industrial areas [30]. Human Activity Recognition

http://doi.org/10.26713/cma.v10i3.1269
https://orcid.org/0000-0002-0930-2035
https://orcid.org/0000-0001-7556-8942
https://orcid.org/0000-0001-9701-0413

542 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

(HAR) is a key research topic for human behavior classification problems [22, 36, 49], and
creates more challenges in the research field of machine learning (ML). Several techniques
have been proposed to solve these problems. Recently, deep learning (DL) have been shown to
be successful and attracted significant attention. In general, DL has been widely used with
image data, to solve problems in computer vision and many research areas, e.g.biomedicine
[43], transportation [33], manufacturing systems [45], consumer devices and services [26], and
including previous research on recognising human activities in smart homes [28] etc.

Convolutional Neural Network (CNN) [24] is one of the DL techniques. In addition, to good
ability to learn data, it can handle complex HAR tasks well. Wang et al. [44] have surveyed
recent advances of deep learning in activity recognition. CNN has been used for sensor-based
activity recognition [21,38–40], it has expanded the scope in and state-of-the-art and for many
research challenges. Nweke et al. [34] reviewed combinations of CNN and other DL techniques,
that affect the efficiency of the model in predicting class labels for mobile sensor activity
recognition. However, the performance of the CNN model has been improved by combining
its capabilities with other models [17, 25, 27]. We note that, in combining those abilities, each
model has its own capabilities. If we combine them properly, it will increase the efficiency of
the model.

We describe a new deep learning model – Deep One-Pass Learning (DOPL) algorithm as
a modified CNN model for HAR problem: smartphone-based recognition of human activities
and postural transitions [37]. Our model combines the performance of a CNN and Extreme
Gradient Boosting (XGBoost) [6], the motivations are: We have already observed that a single
model is not sufficient for complex data in many fields and research areas. We consider the
advantage of the CNN model for handling complex data including a feature learning process.
Furthermore, we choose to use only the capabilities of the convolutional layer and weights from
a pre-trained CNN. Due to the pre-training, we do not need to re-adjust the weights in each
the convolutional layer. Therefore, the backpropagation algorithm in the loop is not necessary,
including the Fully Connected (FC) layer. We looked for models that have good performance
in predicting class labels on their own, and which will handle the data passing the feature
learning step as the first step: XGBoost is a scalable machine learning system for tree boosting,
commonly used by data scientists and successful in many machine learning competitions (e.g.
Kaggle). Finally both models – CNN and XGBoost are state-of-the-art and many researchers
show good performance [6,26,33,43,45].

DOPL consists of two main sections: first, it has a convolutional layer stacked in several
layers for learning information features. The second stage is responsible for processing the
training data passed from the feature learning step to predicts class labels. However, DOPL
adds improvements for weights received from the pre-trained model. As we show, this increases
accuracy and reduces training time, because it does not start with randomly chosen weights,
which may be far from the optimal weight. In addition, we added the pooling layer to reduce
the size of the training set.

The main contributions of this paper are:

• A a new deep learning model called ‘DOPL’ for HAR problem based on Pre-Trained
weights.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al. 543

• DOPL takes less time to train data than CNN, see Table 6.

• Our model is effective for automatic feature learning and there is time complexity as
O(Ld2mnpq)+O(r(Kt+ logB)) see in Section 3.4.

• DOPL provides higher accuracy than the two individual models, CNN and XGBoost,
which are the current prototypes for modeling, and other extant models, i.e., Logistic
Regression (LR) [7,10,47], Extra Trees Classifier (ETC) [13], Gradient Boosting Classifier
(GBC) [11,12,16], Random Forest Classifier (RFC) [3], Gaussian Naive Bayes (GNB) [4],
Decision Tree Classification (DTC) [2], Multilayer Perceptron (MLP) [19] and Support
Vector Classification (SVC) [5]. In addition, we evaluated the performance of other
research CNNs [21, 38–40], previously reported for HRA tasks, listed in Wang et al.’s
survey [45].

DOPL differs from previous work of Jabri et al. [20] and Lioutas et al. [29], in that
Pre-training weights are commonly used for Visual Question Answering (VQA) tasks, using
weights acquired from a library or public framework [46] (e.g. Theano [42], Lasagne [8],
ImageNet [15], word2vec [32], AlexNet [23], GoogLeNet [41], and ResNet [18] etc.). However,
the weights for our model were directly generated from the HAR data set for training with our
model and saved as the pre-trained weights in the prediction stage.

The remainder of this paper covers: in Section 2, we review related theories and research.
In Section 3, we set out details of DOPL, including the architecture, pre-training weights, data
preprocessing and learning algorithm. Section 4 describes design of experiments for evaluating
performance. Then, we evaluate the performance from the results and, finally, conclude.

2. Material and Methods
2.1 Human Activity Recognition (HAR) Data Set
The smartphone-based recognition of human activities and postural transitions is public data
set, it used to evaluate the performance of our model, was built by Jorge-L et al. [37] from 30
people, for human activities and postural transitions definition. All volunteers wore a sensor
equipped smartphone (Samsung Galaxy S II) on the waist. Data the sensors and video images
were recorded and then manually labeled. Activities were classified as six basic activities:
three static postures (standing, sitting, lying) and three dynamic activities (walking, walking
downstairs and walking upstairs). By adding transitions between the basic activities, we end
up with 12 activity labels: listed in Table 1: six basic activities: composed of three dynamic
activities - WALKING, WALKING_UPSTAIRS and WALKING_DOWNSTAIRS - and three
static ones - SITTING, STANDING and LYING DOWN - and possible six transitions between
them: STAND_TO_SIT, SIT_TO_STAND, SIT_TO_LIE, LIE_TO_SIT, STAND_TO_LIE, and
LIE_TO_STAND. We assumed our volunteers were not acrobats or contortionists. Details of
the sensors are shown in Table 2. Data used for activity recognition was obtained from a
smartphone sensor. This data set was sourced from the University of California at Irvine
(UCI) Repository of machine learning data sets [9] – UCI smartphone: It is commonly used in
research for high-level activity understanding [44]: the data set is described in Definition 2.1.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

544 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

Each element of the vector consists of a classes label, including 10,929 instances, each with
561 attributes. There were no missing values. There were 12 classes in this data set (see
Example 2.2). The data set was divided with three-fold cross-validation (see Section 4.2) for
evaluating models, with 7,286 assigned to training and 3,643 assigned to test activities.

Definition 2.1. Input: Let I= {xi, yi|1≤ i ≤ M}, be the training set of M vectors, each vector xi

consists of N features, xi = {p j|1≤ j ≤ N}, and yi a label, xi in R.

Example 2.2. The expression: If M=10,929 and N=561, then I={(xi, yi)|1≤ i≤10,929}, (xi, yi)
be the training set of 10,929 vectors, each vector xi consists of 561 feature xi = {p j|1≤ j ≤ 561}.

Table 1. Activity Labels characteristic

Class ID Activity Labels Description Number of Instances

1 WALKING walking 1,722
2 WALKING_UPSTAIRS walking upstairs 1,544
3 WALKING_DOWNSTAIRS walking downstairs 1,407
4 SITTING sitting 1,801
5 STANDING standing 1,979
6 LYING_DOWN lying 1,958
7 STAND_TO_SIT postural transition: standing - to - sitting 70
8 SIT_TO_STAND postural transition: sitting - to - standing 33
9 SIT_TO_LIE postural transition: sitting - to - lying 107

10 LIE_TO_SIT postural transition: lying - to - sitting 85
11 STAND_TO_LIE postural transition: standing - to - lying 139
12 LIE_TO_STAND postural transition: lying - to - standing 84

Table 2. HAR data set

Characteristic Activity Labels
Type Activities of Daily Living (ADL)
The number of Subject 30
Sensor Rate 50 Hz
Sensor Accelerometer, Gyroscope
Sensor Modality Body-worn
Activity 6
The number of Activity Labels 12
The number of Instances 10,929
The number of Attributes 561
The number of Training/Testing set 7,286/3,643

2.2 Convolutional Neural Network
A Convolutional Neural Network (CNN) [24] is described in detail by Goodfellow et al. [14].
A short summary follows, but readers familiar with CNN may skip this section. We assume
the input training data to be a grey scale image, I, by Definition 2.3.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al. 545

Definition 2.3. Image: An input H×D grayscale image, I ∈RH×D , when p jk ∈R is the intensity
of the pixel represented as:

I= {p jk|1≤ j ≤ H,1≤ k ≤ D}, (1)

A CNN architecture usually consists of several convolutional layers, alternating with
multiple pooling layers, which are responsible for feature learning from the training data.
A fully Connected (FC) will be the last layer of net (i.e., Conv,Pool/Conv,Pool/. . . /FC). For
understanding, the calculation for each layer is described in order in th following paragraphs.

The convolutional layer applies a I⊗K, in which a dot product operation between image
and a hk ×dk kernel, K, is slid through every element, with stride Sk. The output from layer,
l, Yi , where ith feature map, with a bias, B, added is sent through the Rectified Linear Unit
(ReLU) activation function, φ, where φ = {(0, x)| 0 if x < 0, x if x ≥ 0}. So the normalization
formula for calculating is:

Y(l)
i =φ

(
B(l)

i +
f (l−1)∑
j=1

K(l)
i, j ∗Y(l−1)

j

)
, (2)

where l th is index layer, than Y(l)
i is the output of l th layer for the ith feature map and

Y(l−1)
j is the output of the previous layer for the jth feature map by index of a feature map

is f ∈ [1..Fk], because they are transformations (the convolutions) of the previous inputs. Note
that the number of feature maps in each layer may vary, set by the user for each application,
Fk. In convolution layer, k ∈ [1..L].

The pooling layer will help reduce the number of the output (downsamples or downscaled).
Function options are set to be used as e.g.maximum, average, etc., commonly used maximum
value on a local rectangular region (neighborhood). Let us assume hp×dp is size of the pooling
windows, then P(..) is a pooling function which acts on Y(l)

i by the output of a max-pooling
function is:

P(Y(l)
i)m,n =max(Y(l)

i)m,n . (3)

The FC layer, received training data from the previous convolutional and pooling layer. In
this layer is a classifier layer, the weights received in this layer each iteration is taken back to
adjust the weights in the previous layer to the first layer (the convolutional layer). We know
that the MLP algorithm is behind the process of predicting probabilities of class labels. Mostly,
softmax is the transformation function, the formula is

Y = softmax(I.W +B) . (4)

Finally, we obtain the output predictions, denote Y , where I is the set of images, W are
weights and B, biases of net.

2.3 Extreme Gradient Boosting Model
Extreme Gradient Boosting (XGBoost) is a machine learning model for classification and
regression problems. This model is effective for machine learning and data mining challenges
and used extensively. Chen and Guestrin’s XGBoost was first used in the KDD Cup 2015 [6].
A brief summary of their work follows, but readers familiar with their work may skip

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

546 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

to Section 3. The architecture of the model has a tree, which is an ensemble of K classification
and regression trees (CARTs). Let xi are the vector training set and yi are the class labels of
xi in order of i. The output prediction, ŷi are the sum of the prediction scores of kth trees:

ŷi =ϕ(xi)=
K∑

k=1
fk(xi) , (5)

where fk ∈ F then fk is the leaf score for the kth tree and F is the set of all K scores. The output
prediction, ŷi , was compared between the target evaluated with a loss function, l(ŷi, yi), and
an added Ω term to prevent overfitting, calculated from:

L(ϕ)=∑
i

l(ŷi, yi)+
∑
k
Ω(fk) , (6)

where Ω(f) = γT + 1
2λ

T∑
j=1

w j
2, then γ and λ are constants to control the regularization degree,

T is the set of leaves in the tree and weight of each leaf denote w. In addition, we can also
improve the efficiency in Equation (6) by expanding the loss function with a first and second
order Taylor expansion. Therefore, we can calculate at step t:

L̃(t) '
n∑

i=1

[
g i f i(xi)+ 1

2
hi f i

2(xi)
]
+Ω(f t)

=
n∑

i=1

[
g i f i(xi)+ 1

2
hi f i

2(xi)
]
+γT + 1

2
λ

T∑
j=1

w j
2

=
T∑

j=1

[(∑
i∈I j

g i

)
w j + 1

2

(∑
i∈I j

hi +λ

)
w j

2

]
+γT , (7)

where g i = ∂l(ŷi
(t−1),yi)

∂ ŷ(t−1)
i

and hi = ∂2l(ŷi
(t−1),yi)

∂(ŷ(t−1)
i)2

are the first and second order gradient statistics of

the loss function respectively, I j = {i|q(xi) = j} is the number of set in leaf, t and w∗
j are the

optimal weight value of leaf, j. The weight is calculated:

w∗
j =−

∑
i∈I j

g i∑
i∈I j

hi +λ
(8)

when calculating the weight in Equation (8), the final equation is the quality of a tree structure,
q can be computed:

L̃(t)(q)=−1
2

T∑
j=1

(∑
i∈I j

g i

)2

∑
i∈I j

hi +λ
+γT. (9)

The XGBoost model is based on calculating scores in each node in the tree structure for split
decisions. For effective prediction, we realize the loss after the split process and want to reduce
it. Let I = IL ∪ IR , where IL is the left and IR is the right node after the split, Lsplit can be
evaluated from:

Lsplit =
1
2

[(∑
i∈IL

g i
)2

∑
i∈IL

hi +λ
+

(∑
i∈IR

g i
)2

∑
i∈IR

hi +λ
+

(∑
i∈I

g i
)2

∑
i∈I

hi +λ

]
−γ . (10)

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al. 547

3. Deep One-Pass Learning (DOPL) Model
In this section, we describe the details of our new model, DOPL, which combines elements of
CNN and XGBoost, but emphasizes the key differences in DOPL. The primary difference is
the Pre-Trained weight module, which is the first step in the overall structure, followed by the
CNN and XGBoost modules. Each DOPL module is described in order in the following sections.

The main contributions of our model are:

• DOPL is powerful, auto feature learning by convolutional layer and optimal weights from
pre-trained. In addition, we have a scalable end-to-end tree boosting for predicting class
labels by XGBoost. It differs from traditional CNN, since it does not have to adjust the
weights and the FC layer was replaced by XGBoost.

• Our model uses one step only for learning feature data, because we apply optimal weights
from pre-training. It does not need to rely on a backpropagation step to re-adjust weights.
Therefore, it reduces the cost of an iterative loop for fine tuning weights in each a
convolutional layer.

• We removed the re-adjusting weights step, weights were optimal after pre-training with
the CNN model. The time complexity for fine tuning weights is O(Ld2mnpq)+O(MNhce)
(see in Table 5). Pre-trained weights make it more effective, than initiating a custom or
randomly generated set of weights.

• Our model does not focus only on image processing, but also other general classification
problems.

3.1 DOPL Architecture
The overall architecture of our model see in Figure 1.

Figure 1. Overview of DOPL: Training and prediction (left side), and Pre-Trained weights (right side)

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

548 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

An overview of the function of each module is described in the following list:

Pre-Trained weights: Pre-Trained Weights (right side of Figure 1) is the preprocessing module
and is outside our model, but it is important, because pre-training generates optimal weights
for use in our model and improves the performance of our model. CNN is used to train weights:
we used a backpropagation method to adjust weights repeatedly until the end of the epoch (or
predefined number of cycles) or optimal weights were found by measuring the model accuracy.
These optimal weights are used in the next module.

Training: This module is a key part of our model (left side of Figure 1); it is responsible
for training with a training set. All parameters used here will be set as in the Pre-Training
model, including weights in the feature learning step. The training module has seven layers -
explained in further detail later - Section 3.1. Output from this module is used for predicting
class labels (Section 3.1) for classification problems.

1. Input layer: The input layer is the first layer of the model for loading the training set -
vector format data in the HAR problem. Remark 3.1 has affected this layer:

Remark 3.1. We use the capabilities of the convolutional layers from CNN, the input
must be a tensor format see in Definition 2.3. Therefore, the training set (in Section 2.1)
will be converted to the standard input format for convolutional operation, as described
in the following Section 3.3.

2. Data preprocessing layer: We used this module from Section 3.3, because it enables our
system to handle a wide variety of problems appearing in quite different formats. It
defines a common data format for the model, supporting a variety of data types, so
that our model can process general data and is not limited to image data. Details of
the common format, which is sent to the next step, are shown in Section 3.3.

3. Convolutional layer: Features are learnt in this layer using a convolutional operator. We
set the number of layers, L, according to user needs. See Equation (2) in Section 2.2 for
the equation of the convolutional operation. To determine the number of layers, L, we
consider overall time complexity of the model (see Table 5, which contains L), computer
power of the machine used, to estimate the run time, and data adequacy, because if the
number of features and instances is low, it may not be enough for convolutional layers

However, in this layer, we will process only once without re-adjusting weights,
since weights used in this layer are obtained from the Pre-Trained weights module, see
Section 3.2. This greatly reduces run time, see comparisons with CNN and our model in
Table 6 of Section 4.

4. Pooling layer: The pooling layer helps reduce the size of the previous convolutional layer:
the Max operation used in this layer is max pooling. Thus, the number of layers for
pooling and convolution will be the same in our model.

Predicting: After receiving the training model, the prediction module (left side of
Figure 1) predicts the target class labels from the test set.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al. 549

5. Reshape layer: After a sequence of pairs of (convolution:pooling layers) which form the
feature learning stage, the output is a tensor, Z. The reshape layer, shown in the dashed
box in Figure 2, reformats this final output to a hierarchical structure.

Figure 2. The reshape layer re-adjusts the shape of the data (tensor) to the vector format

6. Class prediction layer: The class prediction layer is a key layer of the model and
influences accuracy of the class prediction. Behind the prediction, efficiency is driven by
ensemble tree gradient boosting, Extreme Gradian Boosting (XGBoost) [6]. We evaluate
the quality of the tree by calculating the points (as in Equation (9)):

L̃(t)(q)=−1
2

(∑
i∈I j

g i
)2

∑
i∈I j

hi +λ
+γT

and candidate split will be considered based on scores of the left and right nodes of the
instance, after a split, in order to reduce loss in the split operation (as in Equation (10))
in Section 2.3.

Lsplit =
1
2

[(∑
i∈IL

g i
)2

∑
i∈IL

hi +λ
+

(∑
i∈IR

g i
)2

∑
i∈IR

hi +λ
+

(∑
i∈I

g i
)2

∑
i∈I

hi +λ

]
−γ .

7. Output layer: The output layer is the last layer and generates the predicted class - the
final output. All the steps of the model are set out in Section 3.4.

3.2 Pre-Trained weights
Pre-training weights in a deep learning model avoid random weight initial settings and
repeated training for weight adjustment. It reduces the training time, when comparing our
models with traditional CNN (see in Table 6). In general, pre-training has been commonly
used in Visual Question Answer (VQA) problems [20,29]. It is used to simplify model training.
The model can predict class labels, without computing the weights itself, but uses weights
shared from a public service provider, e.g. Theano [42], Lasagne [8], ImageNet [15], word2vec
[32], AlexNet [23], GoogLeNet [41], ResNet [18] etc. However, pre-training was not mentioned
in HAR tasks, investigated by Wang et al. [44] and Nweke et al. [34]. We were interested
here, to assess the effectives of pre-training for predicting class labels and avoid adjustment of
training weights and its computational cost.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

550 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

Our DOPL system has two modules, the training module and the recognition module (see
Figure 1), where the pre-training module is shown on the right in the dashed box. Although
not explicitly shown, the pre-trained weights, central vertical box in Figure 1 can be saved and
used in a second recognition task (the system on the left). CNN was chosen as a prototype of
the pre-training model because it is effective and is commonly used in HAR tasks [21, 39, 40].
The CNN parameters were set to be appropriate for our model, including the number of
convolutional layers, L, output depth, z, kernel sizes, K(l), and kernel strides, S(l)

k , etc.

3.3 Data Preprocessing
As noted before, this section is an important housekeeping stage to allow our system to handle
data from multiple sources in multiple formats. Basically, we pad out the data to generate
square tensors, as necessary, by adding zeroes Q (see Definition 3.4).

Definition 3.2. Input: Let I = {xi, yi|1 ≤ i ≤ M}, be the training set of M vector, each vector
xi consists of N features, xi = {p j|1 ≤ j ≤ N}, and yi is the label of image xi in R, if
p j = [p0, p1, . . . , pN]T is a set of N feature vectors in RN , since N ′ =p

N is integral, we convert
to input data to be a square matrix with dimension N ′ as follows:

p j ⇒ [p0, p1, . . . , pN]T ⇒

p11 p12 · · · p1N ′

p21 p22 · · · p2N ′
...

...
pN ′1 pN ′2 · · · pN ′N ′

 . (11)

Example 3.3. If N = 9, then N ′ = 3 the vector [0,1,2,3,4,5,6,7,8]T is a set of data vectors in
R9, this vector matches the standard criterion, so is just copied a 3×3 matrix as follows:

p j ⇒ [p0, p1, p2, p3, p4, p5, p6, p7, p8]T ⇒
p11 p12 p13

p21 p22 p23
p31 p32 p33

 .

Definition 3.4. Adding Zeros: If N is not integral, we pad the feature vector with zeros, Q, and
copy the padded vector to a N ′×N ′ square matrix.

Example 3.5. For example adding zeros when we assume a vector [0,1,2, . . . ,10]T in R11, so
five zeroes, [0,0,0,0,0]T , are added will lead to a 4×4 matrix as follows:

Q(p j) ⇒ [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10,0,0,0,0,0]T

⇒

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 0
0 0 0 0

For input in Section 2.1, Let N = 561, when N ′ =p

561 is not integral, a vector [0,1,2, . . . ,561]T

in R561, so 15 zeros, are added will leading to a vector [0,1,2, . . . ,576]T in R576, then N ′ =p
576= 24 is arranged in a 24×24 matrix.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al. 551

Definition 3.6. Tensor: Let M is the training set, when [xi
j]N

be a set of N feature vectors in

RN then N ′ =p
N is integral, it is defined as dimension for a square matrix notation [ai

j]N ′N ′ .
Therefore, the general tensor, T of M-order can be created as follows:

T = [
ai1 i2...iM

j1 j2... jM

]
N ′N ′ . (12)

3.4 DOPL Algorithm
Let I = {xi, yi|1 ≤ i ≤ M}, be the training set of M vector, each vector xi consists of N feature
xi = {p j|1≤ j ≤ N}, be a set of N feature vectors in RN or RN ′×N ′

, where N ′ =p
N and yi is the

label of image xi in R. The learning algorithm for the DOPL can be summarized as follows:

1. Initialize the training data set, I= {xi, yi|1≤ i ≤ M}

2. If necessary, pad the N elements of each training data item, xi , so that new data item
can be formed into a square matrix of dimensions, N ′×N ′.

3. Convert x j tensor format, (N ′, N ′, z(l))

4. Set the parameters of the convolutions for learning features:

(a) number of convolutional layers, L
(b) convolutional layer output depth, z
(c) for each layer, set the kernel sizes, K(l), and
(d) kernel strides, S(l)

k

5. Determine the weights from the pre-trained model.

(a) get weights, WPT and
(b) get bias, BPT

6. For each layer, l, in 1..L:

(a) Calculate the convolutions to generate the Y(l)
i for layer, l:

Y(l)
i =φ(BPT i

(l) +
f (l−1)∑
j=1

WPT
(l)
i, j ∗Y(l−1)

j) .

(b) Calculate the pooling, replaces the output with the maximum value.

P(Y(l)
i)=max(Y(l)

i).

7. Reshape P(Y(l)
i) to a vector of length (N ′×N ′× z(l)) – Z(l).

8. Initialize a new training data set for class prediction layer

Inew = {(Zi, yi)|1≤ i ≤ M}.

9. Initialize parameters for the prediction step, set

(a) total number of trees, K
(b) regularization parameters, γ and λ,
(c) number of leaves in the tree, T
(d) column subsampling parameter,

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

552 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

(e) maximum tree depth and
(f) learning rate

10. Determine the class labels for output:

ŷi =ϕ(Zi)=
K∑

k=1
fk(xi), fk ∈ F,

where F = f (Zi)= wq(Z)(q :RN → T,w ∈RT).

11. Calculate the optimal leaf weight for the best tree structure

w∗
j =−

∑
i∈I j

g i∑
i∈I j

hi +λ
.

12. Calculate the quality of the tree structure, q, using the scoring function

L̃(t)(q)=−1
2

(∑
i∈I j

g i

)2

∑
i∈I j

hi +λ
+γT.

13. Calculate the best splitting points

Lsplit =
1
2

[(∑
i∈IL

g i

)2

∑
i∈IL

hi +λ
+

(∑
i∈IR

g i

)2

∑
i∈IR

hi +λ
+

(∑
i∈I

g i

)2

∑
i∈I

hi +λ

]
−γ .

14. Terminate

Our DOPL algorithm has overall time complexity:

O(Ld2mnpq)+O(r(Kt+ logB))

which reduces to O(Ld2mnpq), where L is the number of layers, d is the number of input or
output channels, the data matrix has size m×n, the kernel has size p×q, r = ‖x‖ is the number
of non-missing entries, K is the number of trees, t is the tree depth and B is the block length.

4. Model Evaluations
4.1 Experimental Setup
We set the experimental parameters carefully to balance the resources used while achieving
good performance, guided by the time complexity of our model (see Section 3.4). Initially, we
set the number of the convolutional layers or number of maps, L = 3, and the output depth of
the convolutional layer, z = 2n, where n = 1,2, ...,5. The chosen z value sets a balance between
performance and use of resources. We set the kernel size, K, is 3×3, if K is small, accuracy will
be high, but the convolution operation will be repeated many times and consume computation
time. On the other hand, if K is too large, accuracy may suffer (the kernel size will not be
larger than the training set). Additionally, a small stride of the kernel Sk = 1 enables small
features to be recognized. The parameters set in our model in each layer are shown in Table 3.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al. 553

We implemented and tested our and other models with Python (3.6.4) and functions from the
TensorFlow library [1], e.g. the convolutional operation (also used in CNN), together with the
XGBoost python package for the prediction step. For other model testing, we used the machine
learning library from scikit-learn [35]. Our experiments used Linux (Ubuntu 18.04.1LTS) on a
system containing an Intel® Xeon® CPU E5-2620 0 @ 2.00GHz×12, 24.0 GB.

Table 3. Architecture in each layer of the DOPL model

Layer Name Type Input Kernel Stride Output
L1 Input N ′×N ′ na na N ′×N ′

L2 Data Preprocessing N ′×N ′ na na [N ′, N ′,1]
L3 Convolutional (Conv1) [N ′, N ′,1] hk ×dk 1 [N ′, N ′, z(L−2)]
L4 Max-Pooling (Pool1) Conv1 hp ×dp hp ×dp Pool1
L5 Convolutional (Conv2) Pool1 hk ×dk 1 [N ′, N ′, z(L−1)]
L6 Max-Pooling (Pool2) Conv2 hp ×dp hp ×dp Pool2
L7 Convolutional (Conv3) Pool2 hk ×dk 1 [N ′, N ′, z(L)]
L8 Max-Pooling (Pool3) Conv3 hp ×dp hp ×dp Pool3
L9 Reshape Pool3 na na N ′×N ′× z(L) or Z
L10 Class Prediction Z na na Predicted Class
L11 Output na na na Predicted Class

Notes: na = not applicable.

We used three-fold cross-validation to train and test the models. Each data set was divided
into three disjoint subsets. Then, two subsets were used as a training set and the other subset
was used as a testing set. This was repeated three times: each subset was used exactly once
as the testing set. The results from each testing set were averaged and a standard deviation
calculated.

Our model was compared with other models i.e., Convolutional Neural Network (CNN)
[21, 24, 38–40], Extreme Gradient Boosting (XGBoost) [6], Logistic Regression (LR) [7, 10, 47],
Extra Trees Classifier (ETC) [13], Gradient Boosting Classifier (GBC) [11, 12, 16], Random
Forest Classifier (RFC) [3], Gaussian Naive Bayes (GNB) [4], Decision Tree Classifier (DTC) [2],
Multilayer Perceptron (MLP) [19] and the Support Vector Classification (SVC) [5] (see Table 5).

Parameter settings for DOPL and details for each layer are shown in Table 4. For the CNN
model, the parameters were set to be the same as those for our model, DOPL. The number of
neurons in the FC class was 2n, when n = 8,9,10. In general, CNN supports image data only,
but for our experiments, we added our data preprocessing (see Section 3.3) step to CNN to
facilitate comparison for training sets of vectors in HAR data set (Section 2.1). The XGBoost
model was set similarly, with parameters matching those in the class prediction layer of our
model, to fairly evaluate performance.

In addition, we evaluated four variants of the MLP model, with different activation
functions: linear (MLP1), sigmoid (MLP2), tanh (MLP3), and ReLU (MLP4). The numbers
of neurons was 2n, when n = 8,9,10 and the learning rate was set to 0.001. Similarly, four
variants of the SVC model were tested with differing kernel functions: RBF (SVC1), linear
(SVC2), polynomial (SVC3) and sigmoid (SVC4). In total, there were 16 models, including, LR,
ETC, GBC, RFC, GNB and DTC. The effectiveness of our model and properties are summarized
in Table 5.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

554 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

Table 4. Parameters in each layer of the DOPL model

Layer Name Descriptions Parameters

L1 Input: raw data size 10,929×561

Number of classes 12

L2 Data Preprocessing Section 3.3, input size 24×24

Number of convolutional layers, L 3

Learning rate 0.001

L3 Convolutional (First layer)

Kernel size 32×32

Kernel stride 1

L4 Max-Pooling (First layer)

Kernel size 2×2

Kernel stride 1

L5 Convolutional (Second layer)

Kernel size 32×32

Kernel stride 1

L6 Max-Pooling (Second layer)

Kernel size 2×2

Kernel stride 1

L7 Convolutional (Third layer)

Kernel size 32×32

Kernel stride 1

L8 Max-Pooling (Third layer)

Kernel size 2×2

Kernel stride 1

L9 Reshape: re-adjusts data to vector format - see Figure 2

L10 Class Prediction

Total number of trees, K 100

Maximum tree depth 3

L11 Output: class ID of activity label Table 1 1-12

Furthermore, Table 5 shows the time complexity of the models. We assume that: L is the
number of layers, d is the number of input or output channels, the data matrix has size m×n,
the kernel has size p×q, r = ‖x‖ is the number of non-missing entries, K is the number of trees,
t is the tree depth and B is the block length, M is the number of training sets, N is the number
of features or dimensions, h is the number of hidden neurons, c is the number of classes and e
is the number of epochs.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al. 555

Table 5. Properties of models used to compare performance

Models Parameters details Ref. Time Complexity

Deep One-Pass Learning (DOPL) No. of Conv. layer L = 3 - O(Ld2mnpq) + O(r(K t+ logB))

Convolutional Neural Network (CNN)* No. of Conv. layer L = 3 [24] O(Ld2mnpq) + O(MNhce)

Extreme Gradient Boosting (XGBoost) Max_depth = 3 [6] O(r(Kt+ logB))

Logistic Regression (LR) Tol = 0.0001, C=1.0 [7,10,47] O(MN) to O(MN2)

Extra Trees Classifier (ETC) Criterion = Gini, MinSS = 2 [13] O(MNK)

Gradient Boosting Classifier (GBC) Max_depth = 3, MinSS = 2 [11,12,16] O(MNK)

Random Forest Classifier (RFC) Criterion = Gini, MinSS = 2 [3] O(KtMN log N)

Gaussian Naive Bayes (GNB) Var_Smoothing = 1e-09 [4] O(Mc)

Decision Tree Classifier (DTC) Criterion = Gini, MinSS = 2 [2] O(tM log N)

Multi-layer Perceptron Classifier (MLP)

MLP1 Activation = Linear [19] O(MNhce)

MLP2 Activation = Sigmoid [19] O(MNhce)

MLP3 Activation = tanh [19] O(MNhce)

MLP4 Activation = ReLU [19] O(MNhce)

Support Vector Classification (SVC)

SVC1 Kernel = RBF, C = 1.0 [5] O(M3)

SVC2 Kernel = Linear , C = 1.0 [5] O(M3)

SVC3 Kernel = Poly, C = 1.0 [5] O(M3)

SVC4 Kernel = Sigmoid, C = 1.0 [5] O(M3)

Notes: * CNN requires adaptation to the data our pre-processing module.

4.2 Experimental Results
The performance of the DOPL was evaluated on the smartphone-based recognition of human
activities and postural transitions data set (see Section 2.1), a multiclass classification problem.
The results were compared with 16 models in Table 5. DOPL, with pre-trained weights, was
more efficient, because, using weights from pre-training, instead of a loop to re-adjust weights,
found the optimal weights faster. Training times (for the deep learning model) for our model
and CNN are shown in Table 6. DOPL is faster than CNN and it uses a single pass training.
Further, the weights were derived from the pre-trained model and it reduced the training data
size in the pooling layer.

Table 6. Training time of our model compared with CNN

Data set
Training Time (sec.)

Improvement
DOPL CNN

Smartphone-Based Recognition of Human Activities
80 5.6×104 1.4×10−3

and Postural Transitions [37] †

Figures in the ‘Improvement’ column show the time for DOPL as a fraction of that for CNN.

†System Specifications – Processor: Intel® Xeon® CPU E5-2620 0 @ 2.00GHz×12, Memory: 24.0 GiB, OS:
Ubuntu 18.04.1LTS

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

556 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

DOPL and CNN separates very clearly pre-training and running, DOPL used only 1
epoch of training, while CNN used 1,000 epochs. Thus, DOPL ran in 80 s, a fraction of the
original time, 1.4×10−3 s for CNN. The accuracy was similarly improved (see Table 7). We also
compared the accuracy of DOPL with 16 models: it showed better accuracy than all others - a
worst (or ‘safe’) case of 99.20%. Table 7 compares our model with other models as mentioned
above. We have highlighted (bold face), the worst case for three runs of each model and the
standard deviation. Thus we show that our model always performs better than others, as
reflected in better worst case numbers. The standard deviation is a measure of run-to-run
variation.

Table 7. Accuracy of DOPL vs other algorithms

Model
Testing Fold (%)

σ Imp.
1 2 3

Deep One-Pass Learning (DOPL) 99.56 99.26 99.20 ±0.19 -
Convolutional Neural Network (CNN)
CNN1 97.61 97.80 98.11 ±0.25 1.6%
CNN2 [21] ∗ 95.18 - - - 4.0%
CNN3 [38] ∗ 94.79 - - - 4.4%
CNN4 [39] ∗ 90.00 - - - 9.2%
CNN5 [40] ∗ 94.61 - - - 4.6%
Extreme Gradient Boosting (XGBoost) 97.04 97.09 97.06 ±0.02 2.2%
Logistic Regression (LR) 96.24 96.60 96.95 ±0.29 3.0%
Extra Trees Classifier (ETC) 93.99 93.91 93.96 ±0.03 5.3%
Gradient Boosting Classifier (GBC) 96.76 96.93 96.87 ±0.07 2.4%
Random Forest Classifier (RFC) 94.26 94.54 94.84 ±0.24 4.9%
Gaussian Naive Bayes (GNB) 70.22 73.43 73.92 ±1.64 29.0%
Decision Tree Classifier (DTC) 90.53 90.42 90.89 ±0.20 8.8%
Multi-layer Perceptron Classifier (MLP)

MLP1 96.10 96.21 96.73 ±0.28 3.1%
MLP2 96.79 97.01 96.76 ±0.11 2.4%
MLP3 96.71 96.68 97.06 ±0.18 2.5%
MLP4 96.62 95.94 96.10 ±0.29 3.3%

Support Vector Classification (SVC)
SVC1 92.48 91.82 92.86 ±0.43 7.4%
SVC2 97.15 97.20 97.39 ±0.11 2.1%
SVC3 89.13 88.09 88.25 ±0.46 11.1%
SVC4 89.76 88.77 89.46 ±0.41 10.4%

Note: Improvements vs DOPL are shown in the ‘Imp.’ column.
∗ From there source, only an average value was available.

CNN and XGBoost are representative of state-of-the-art models, but DOPL provided higher
accuracy than both models, 1.6% improvement compared to the best of five implementations
of CNN and 2.2% compared to XGBoost. For the MLP variants, performance was in the same

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al. 557

range as CNN, but DOPL also provided more accurate results. SVC2 was also in the same
range as the CNN, but worse than DOPL.

5. Conclusion
We designed a deep one-pass learning model (DOPL) based on pre-trained weights: this model
used only one epoch to recognize smartphone-based human activities and postural transitions.
In addition, it can learn a data set without the need to repeatedly adjust the weights. The
number of convolutional layers can be increased or decreased with some constraints, and the
data set in the features learning process will be passed into XGBoost, which is the last layer
of the model. Pre-training context, we obtain a set of weights from the pre-training model,
CNN was used as a prototype and training model with HAR data set in Section 2.1. The
model trained by our algorithm learnt the data set effectively. Experimental results show that
our model outperformed state-of-the-art models (CNN and XGBoost) used as prototypes for
designing our model, as well as a selection of other commonly used models.

Finally, DOPL has expanded the potential of deep learning techniques. We reduced the time
in recognition: our model was faster than traditional CNN: 80 s vs 56,000 s, or several hundred
times faster. In addition, a survey and review state-of-the-art, and research challenges for
human activity recognition, our pre-training weights method has not been explained, which
challenges the further development of the research in the future. Therefore, our pre-training
weights method is a new thing for human activity recognition tasks. It opens the issue of
challenging problems for future development and research improvement.

Acknowledgement
This work is supported by the Thailand Research Fund (TRF) under grant number
RTA6080013. In addition, we thank Prof. John Morris of the KMITL Research and Innovation
Services (KRIS) for editing the final manuscript.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu and X. Zheng, TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems, software available from http://tensorflow.org/ (2015).

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

http://tensorflow.org/

558 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

[2] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, in Classification and Regression
Trees, Wadsworth and Brooks, Monterey, CA (1984), https://www.bibsonomy.org/bibtex/
27f293aa2bdfd10960ef36928f2795f1d/machinelearning.

[3] L. Breiman, Random forests, Machine Learning, 45(1) (2001), 5–32,
DOI: 10.1023/A:1010933404324.

[4] T. F. Chan, G. H. Golub and R. J. LeVeque, Updating formulae and a pairwise algorithm for
computing sample variances, in COMPSTAT 1982 5th Symposium held at Toulouse 1982, Physica-
Verlag HD, Heidelberg, 30–41 (1982).

[5] C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, ACM Transactions
on Intelligent Systems and Technology, 2(3) (2011), 1–27, software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm.

[6] T. Chen and C. Guestrin, XGBoost: A scalable tree boosting system, in Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’16), San Francisco, California, USA, 785–794, ACM, New York, USA (2016),
DOI: 10.1145/2939672.2939785.

[7] A. Defazio, F. R. Bach and S. Lacoste-Julien, SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives, Advances in Neural Information Processing
Systems, abs/1407.0202 (2014), 1–1, http://arxiv.org/abs/1407.0202, retrieved on 13 August
2018.

[8] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, D. Maturana, M. Thoma,
E. Battenberg, J. Kelly, J. De Fauw, M. Heilman, diogo149, B. McFee, H. Weideman, takacsg84,
peterderivaz, Jon, instagibbs, K. Rasul, CongLiu, Britefury, and J. Degrave, Lasagne: First
Release (2015), DOI: 10.5281/zenodo.27878.

[9] D. Dua and C. Graff, UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/
datasets/Human+Activity+Recognition+Using+Smartphones, University of California, Irvine,
School of Information and Computer Sciences (2015).

[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang and C.-J. Lin, LIBLINEAR: A Library for
Large Linear Classification, Journal of Machine Learning Research, 9 (2008), 1871–1874, http:
//dl.acm.org/citation.cfm?id=1390681.1442794.

[11] J. Friedman, Greedy function approximation: A gradient boosting machine, The Annals of
Statistics 29 (2000), DOI: 10.1214/aos/1013203451.

[12] J. H. Friedman, Stochastic gradient boosting, Computational Statistics & Data Analysis 38(4)
(2002), 367–378, DOI: 10.1016/S0167-9473(01)00065-2.

[13] P. Geurts, D. Ernst and L. Wehenkel, Extremely randomized trees, Machine Learning 63(1) (2006),
3–42, DOI: 10.1007/s10994-006-6226-1.

[14] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, http://www.
deeplearningbook.org (2016).

[15] S. Gross and M. Wilber, Training and Investigating Residual Nets, http://torch.ch/blog/
2016/02/04/resnets.html (2016).

[16] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, 1 (2009), Springer.

[17] P. He, X. Jiang, T. Sun and H. Li, Computer graphics identification combining convolutional
and recurrent neural networks, IEEE Signal Processing Letters 25(9) (2018), 1369–1373,
DOI: 10.1109/LSP.2018.2855566.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

https://www.bibsonomy.org/bibtex/27f293aa2bdfd10960ef36928f2795f1d/machinelearning
https://www.bibsonomy.org/bibtex/27f293aa2bdfd10960ef36928f2795f1d/machinelearning
http://doi.org/10.1023/A:1010933404324
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/1407.0202
http://doi.org/10.5281/zenodo.27878
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://dl.acm.org/citation.cfm?id=1390681.1442794
http://dl.acm.org/citation.cfm?id=1390681.1442794
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1016/S0167-9473(01)00065-2
http://doi.org/10.1007/s10994-006-6226-1
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://torch.ch/blog/2016/02/04/resnets.html
http://torch.ch/blog/2016/02/04/resnets.html
http://doi.org/10.1109/LSP.2018.2855566

A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al. 559

[18] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognitions, in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 (2016).

[19] G. E. Hinton, Connectionist learning procedures, Artificial Intelligence 40(1) (1989), 185–234,
DOI: 10.1016/0004-3702(89)90049-0.

[20] A. Jabri, A. Joulin and L. van der Maaten, Revisiting visual question answering baselines, in
Computer Vision – ECCV 2016, Springer International Publishing, Cham., 727–739 (2016).

[21] W. Jiang and Z. Yin, Human activity recognition using wearable sensors by deep
convolutional neural networks, in Proceedings of the 23rd ACM International Conference on
Multimedia, MM’15 series, 2015, Brisbane, Australia, 1307–1310, ACM, New York, USA,
DOI: 10.1145/2733373.2806333.

[22] E. Kim, S. Helal and D. Cook, Human activity recognition and pattern discovery, IEEE Pervasive
Computing 9(1) (2010), 48–53, DOI: 10.1109/MPRV.2010.7.

[23] A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet classification with deep convolutional
neural networks, in Proceedings of the 25th International Conference on Neural Information
Processing Systems, NIPS’12, Lake Tahoe, Nevada, 1097–1105, http://dl.acm.org/citation.
cfm?id=2999134.2999257, Curran Associates Inc., USA (2012).

[24] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document
recognition, Proceedings of the IEEE 86(11) (1998), 2278–2324, DOI: 10.1109/5.726791.

[25] S. Lee, T. Chen, L. Yu and C. Lai, Image classification based on the boost convolutional neural
network, IEEE Access 6 (2018), 12755–12768, DOI: 10.1109/ACCESS.2018.2796722.

[26] J. Lemley, S. Bazrafkan and P. Corcoran, Deep learning for consumer devices and services:
pushing the limits for machine learning, artificial intelligence, and computer vision, IEEE
Consumer Electronics Magazine 6(2) (2017), 48–56, DOI: 10.1109/MCE.2016.2640698.

[27] G. Liang, H. Hong, W. Xie and L. Zheng, Combining convolutional neural network with
recursive neural network for blood cell image classification, IEEE Access 6 (2018), 36188–36197,
DOI: 10.1109/ACCESS.2018.2846685.

[28] D. Liciotti, M. Bernardini, L. Romeo and E. Frontoni, A sequential deep learning
application for recognising human activities in smart homes, Neurocomputing (2019),
DOI: 10.1016/j.neucom.2018.10.104.

[29] V. Lioutas, N. Passalis and A. Tefas, Explicit ensemble attention learning for
improving visual question answering, Pattern Recognition Letters 111 (2018), 51–57,
DOI: 10.1016/j.patrec.2018.04.031.

[30] H. Liu and L. Wang, Gesture recognition for human-robot collaboration: a review, International
Journal of Industrial Ergonomics 68 (2018), 355–367, DOI: 10.1016/j.ergon.2017.02.004.

[31] Z. Lu, K. Tong, X. Zhang, S. Li and P. Zhou, Myoelectric pattern recognition for controlling a
robotic hand: a feasibility study in stroke, IEEE Transactions on Biomedical Engineering 66(2)
(2019), 365–372, DOI: 10.1109/TBME.2018.2840848.

[32] T. Mikolov, K. Chen, G. Corrado and J. Dean, Efficient estimation of word representations in vector
space, (2013), 1–12, https://arxiv.org/abs/1301.3781.

[33] H. Nguyen, L. Kieu, T. Wen and C. Cai, Deep learning methods in transportation domain: a review,
IET Intelligent Transport Systems 12(9) (2018), 998–1004, DOI: 10.1049/iet-its.2018.0064.

[34] H. F. Nweke, Y. W. Teh, M. A. Al-Garadi and U. R. Alo, Deep learning algorithms
for human activity recognition using mobile and wearable sensor networks: state of
the art and research challenges, Expert Systems with Applications 105 (2018), 233–261,
DOI: 10.1016/j.eswa.2018.03.056.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

http://doi.org/10.1016/0004-3702(89)90049-0
http://doi.org/10.1145/2733373.2806333
http://doi.org/10.1109/MPRV.2010.7
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://doi.org/10.1109/5.726791
http://doi.org/10.1109/ACCESS.2018.2796722
http://doi.org/10.1109/MCE.2016.2640698
http://doi.org/10.1109/ACCESS.2018.2846685
http://doi.org/10.1016/j.neucom.2018.10.104
http://doi.org/10.1016/j.patrec.2018.04.031
http://doi.org/10.1016/j.ergon.2017.02.004
http://doi.org/10.1109/TBME.2018.2840848
https://arxiv.org/abs/1301.3781
http://doi.org/10.1049/iet-its.2018.0064
http://doi.org/10.1016/j.eswa.2018.03.056

560 A Deep One-Pass Learning based on Pre-Training Weights. . . : S. Thongsuwan et al.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.
Perrot and E. Duchesnay, Scikit-learn: machine learning in Python, Journal of Machine Learning
Research 12 (2011), 2825–2830.

[36] C. N. Phyo, T. T. Zin and P. Tin, Deep learning for recognizing human activities using
motions of skeletal joints, IEEE Transactions on Consumer Electronics 65(2) (2019), 243–252,
DOI: 10.1109/TCE.2019.2908986.

[37] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra and D. Anguita, Transition-aware
human activity recognition using smartphones, Neurocomput. 171(C) (2016), 754–767,
DOI: 10.1016/j.neucom.2015.07.085.

[38] C. A. Ronao and S.-B. Cho, Deep convolutional neural networks for human activity recognition
with smartphone sensors, in Neural Information Processing, 46–53 (2015), Springer International
Publishing, Cham.

[39] C. A. Ronao and S.-B. Cho, Evaluation of deep convolutional neural network architectures for
human activity recognition with smartphone sensors, in Proceedings of the KIISE Korea Computer
Congress, Korea, 858860 (2015).

[40] C. A. Ronao and S.-B. Cho, Human activity recognition with smartphone sensors using deep
learning neural networks, Expert Syst. Appl. 59 (2016), 235–244.

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A.
Rabinovich, Going deeper with convolutions, in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 1–9 (2015), DOI: 10.1109/CVPR.2015.7298594.

[42] Theano Development Team, Theano: A Python framework for fast computation of mathematical
expressions, CoRR (2016), 1–19, http://arxiv.org/abs/1605.02688, 13 August 2018.

[43] M. Wainberg, D. Merico, A. Delong and B. J. Frey, Deep learning in biomedicine, Nature
Biotechnology 36 (2018), 829–838, DOI: 10.1038/nbt.4233.

[44] J. Wang, Y. Chen, S. Hao, X. Peng and L. Hu, Deep learning for sensor-based activity recognition:
a survey, Pattern Recognition Letters 119 (2019), 3–11, DOI: 10.1016/j.patrec.2018.02.010.

[45] J. Wang, Y. Ma, L. Zhang, R. X. Gao and D. Wu, Deep learning for smart manufacturing: methods
and applications, Journal of Manufacturing Systems (Special Issue on Smart Manufacturing) 48
(2018), 144–156, DOI: 10.1016/j.jmsy.2018.01.003.

[46] Q. Wu, D. Teney, P. Wang, C. Shen, A. Dick and A. van den Hengel, Visual question answering: a
survey of methods and datasets, Computer Vision and Image Understanding 163 (2017), 21–40,
DOI: 10.1016/j.cviu.2017.05.001.

[47] H.-F. Yu, F.-L. Huang and C.-J. Lin, Dual coordinate descent methods for logistic regression and
maximum entropy models, Machine Learning 85(1) (2011), 41–75, DOI: 10.1007/s10994-010-5221-
8.

[48] P. Zham, D. K. Kumar, P. Dabnichki, S. A. Poosapadi and S. Raghav, Distinguishing different
stages of Parkinsons disease using composite index of speed and pen-pressure of sketching a spiral,
Frontiers in Neurology 8 (2017), 435, DOI: 10.3389/fneur.2017.00435.

[49] Z. Zhang, S. Shan, Y. Fang and L. Shao, Deep learning for pattern recognition, Pattern Recognition
Letters 119 (2019), 1–2, DOI: 10.1016/j.patrec.2018.10.028.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 541–560, 2019

http://doi.org/10.1109/TCE.2019.2908986
http://doi.org/10.1016/j.neucom.2015.07.085
http://doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1605.02688
http://doi.org/10.1038/nbt.4233
http://doi.org/10.1016/j.patrec.2018.02.010
http://doi.org/10.1016/j.jmsy.2018.01.003
http://doi.org/10.1016/j.cviu.2017.05.001
http://doi.org/10.1007/s10994-010-5221-8
http://doi.org/10.1007/s10994-010-5221-8
http://doi.org/10.3389/fneur.2017.00435
http://doi.org/10.1016/j.patrec.2018.10.028

	Introduction
	Material and Methods
	Human Activity Recognition (HAR) Data Set
	Convolutional Neural Network
	Extreme Gradient Boosting Model

	Deep One-Pass Learning (DOPL) Model
	DOPL Architecture
	Pre-Trained weights
	Data Preprocessing
	DOPL Algorithm

	Model Evaluations
	Experimental Setup
	Experimental Results

	Conclusion
	References

