Enumeration of Glued Graphs of Paths

Monthiya Ruangnai ${ }^{1,0}$ and Sayan Panma ${ }^{2,{ }^{*},}$
${ }^{1}$ PhD Program in Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
${ }^{2}$ Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
*Corresponding author: panmayan@yahoo.com

Abstract

Let G_{1} and G_{2} be two vertex-disjoint graphs with H_{1} a subgraph of G_{1} and H_{2} a subgraph of G_{2}. Let $f: H_{1} \rightarrow H_{2}$ be an isomorphism between these subgraphs. The glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f is the graph that results from combining $G_{1} \cup G_{2}$ by identifying the subgraphs H_{1} and H_{2} according to the isomorphism f between H_{1} and H_{2}. We refer G_{1} and G_{2} as its original graphs and refer H as its clone where H is a copy of H_{1} and H_{2}. In this paper, we enumerate all non-isomorphic resulting glued graphs between two paths at connected clones. Moreover, we also give the characterization of the glued graph at a connected clone.

Keywords. A glued graph; The glue operator; Glued graph of paths; Graphs enumeration; Graph isomorphisms

MSC. 05C30; 05C38; 05C60; 05C76
Received: May 23, 2019
Accepted: July 18, 2019
Copyright © 2019 Monthiya Ruangnai and Sayan Panma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Graphs have proven to be an extremely useful tool for analyzing situations involving a set of elements which are related by some property. The most obvious examples of graphs are sets with physical links such as subway systems, telephone communication systems, oil pipelines, and electrical networks. There are numerous ways to do operations on graphs so as to obtain new graphs and study their properties for more advantages. Consequently, in this paper, we are interested in the glue operator which has been introduced in Uiyyasathian's doctoral thesis [8]
and Promsakon's master's degree thesis [6].
Let G_{1} and G_{2} be two vertex-disjoint graphs with H_{1} a subgraph of G_{1} and H_{2} a subgraph of G_{2}. Let $f: H_{1} \rightarrow H_{2}$ be an isomorphism between these subgraphs. The glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f is the graph that results from combining $G_{1} \cup G_{2}$ by identifying the subgraphs H_{1} and H_{2} according to the isomorphism f between H_{1} and H_{2}. The glued graph is denoted by $G_{1} \triangleleft \triangleright G_{2}$. We refer G_{1} and G_{2} as its original graphs and refer H as $\mathrm{H}_{1} \cong_{f} \mathrm{H}_{2}$ its clone where H is a copy of H_{1} and H_{2}.

Some more recent works on glued graphs are investigated. These works vary on their original graphs and clones. In 2006, Promsakon [6] examined some coloring properties of the glued graph. The original graphs such as forests, trees, bipartite graphs, k-partite graphs, chordal graphs, and interval graphs are studied. Mekwian [4] applied this new binary operation of glued graphs for solving E-logistics network problems in the next year.

In 2009, Uiyyasathian and Saduakdee [10] were interested in the perfection of graphs. They studied chromatic numbers of glued graphs at complete clones together with their clique numbers. In 2010, Uiyyasathian and Jongthawonwuth [9] investigated bounds of clique partition numbers of glued graphs at K_{2}-clones and K_{3}-clones. Uiyyasathian and Pimpasalee [5] also obtained bounds of clique covering numbers of glued graphs at complete clones in the same year.

Moreover, in 2010, Boonthong et al. [1] characterized another interesting research on glued graphs. They obtained the conditions of being Eulerian glued graphs. Malila [3] observed some values such as the domination number (in 2011) and the upper and the lower independence number (in 2014) on glued graphs of cycles having paths as the clones.

Furthermore, Seyyedi and Rahmati [7] were inspired by the work on clique coverings of Pimpasalee [5], so they studied some properties of glued graphs at some certain clones in the view of algebraic combinatorics in 2014.

We see that all mentioned topics have been focusing in the term of glued graphs. In addition, Gross and Yellen [2] also introduced the term "amalgamation" as a graph operation in their textbook in 2006. The definitions of both terms are equivalent. According to those research works, we see that there are various forms of original graphs and clones.

The original graphs we shall consider in this paper is a pair of non-trivial paths at any lengths. When gluing on a pair of isomorphic subgraphs of two original paths, the structure of resulting graphs may depend on exactly how the vertices and edges of the two subgraphs are matched via an isomorphism. Therefore, different types of resulting graphs such as a longer path, a cycle, a tree, or a multigraph could be exist. Our considering clone is a connected subgraph of indicated paths. The objective is to enumerate all non-isomorphic resulting graphs obtained from the gluing of two paths together. We make a systematic analysis to describe the number and the relation of all distinct resulting glued graphs of paths. We also investigate the characterization of the glued graph at a connected clone. We hope that our results can be applied to solve real-life problems. For example, a route map can be represented by a graph, such as to find the number of possible transit routes, to plan an itinerary, or to settle a location as the hub of the transportation.

2. Preliminaries

This section provides definitions and notations which are useful in the sequel of this research work (see for further details concerning graph theory and glued graphs in [12] and [6], respectively).

A graph G consists of a non-empty finite set $V(G)$ of elements called vertices, and a finite family $E(G)$ of unordered pairs of these elements of $V(G)$ called edges. We call $V(G)$ the vertex set, and $E(G)$ the edge family of G. A subgraph H of G is a graph which all vertices of H belong to $V(G)$ and all edges of H belong to $E(G)$. That is, $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. The number of vertices of a graph G is the cardinality of the vertex set $V(G)$, denoted by $|V(G)|$. Similarly, the number of edges of a graph G is the cardinality of the edge family $E(G)$, denoted by $|E(G)|$.

The degree of a vertex v of G is the number of edges incident with v, and is written $\operatorname{deg}(v)$. The degree sequence of a graph consists of the degrees of all vertices of the graph written in an increasing order, with repeats where necessary.

A walk in G is a finite sequence of vertices in G such that two consecutive vertices in the sequence are adjacent. A path is a walk in which no vertex is repeated. A path with n distinct vertices are denoted by P_{n}. A graph G is said to be connected if there is a path connecting between any two vertices of G.

A graph $G_{1}=\left(V\left(G_{1}\right), E\left(G_{1}\right)\right)$ is isomorphic to a graph $G_{2}=\left(V\left(G_{2}\right), E\left(G_{2}\right)\right)$ if there is a one-to-one correspondence f from $V\left(G_{1}\right)$ onto $V\left(G_{2}\right)$ such that $\{u, v\} \in E\left(G_{1}\right)$ if and only if $\{f(u), f(v)\} \in E\left(G_{2}\right)$. If such a function exists, it is called an isomorphism from G_{1} to G_{2}, and written by $G_{1} \cong G_{2}$.

Let G_{1} and G_{2} be disjoint graphs with H_{1} a subgraph of G_{1} and H_{2} a subgraph of G_{2}. Let $f: H_{1} \rightarrow H_{2}$ be an isomorphism between these subgraphs. The glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f (or the amalgamation of G_{1} and G_{2} modulo the isomorphism $f: H_{1} \rightarrow H_{2}$) is the graph that results from combining $G_{1} \cup G_{2}$ by identifying the subgraphs H_{1} and H_{2} according to the isomorphism f between H_{1} and H_{2}. The glued graph is denoted by $G_{1} \triangleleft \triangleright G_{2}$.
$H_{1} \cong_{f} H_{2}$
Let H be the copy of H_{1} and H_{2} in the glued graph, i.e., H is a subgraph of the glued graph and $H \cong H_{1} \cong H_{2}$. We refer H as its clone and refer G_{1} and G_{2} as its original graphs.

Example 1. Consider two subgraphs H_{1} and H_{2} of G_{1} and G_{2}, respectively, where $H_{1} \cong H_{2}$ as in Figure 1. We obtain $H_{1}=\Delta(1,2,3) \subseteq G_{1}$ and $H_{2}=\Delta(a, b, c) \subseteq G_{2}$.

Figure 1. $H_{1}=\Delta(1,2,3) \subseteq G_{1}$ and $H_{2}=\Delta(a, b, c) \subseteq G_{2}$

Consider the following three isomorphisms f, g, and h, between H_{1} and H_{2} :

$$
f(1)=a, f(2)=b, f(3)=c ; g(1)=b, g(2)=c, g(3)=a ; h(1)=c, h(2)=b, h(3)=a .
$$

Then we have the following three glued graphs as shown in Figure 2 .
$\underset{H_{1} \triangleq \not \overbrace{f} H_{2}}{ }$

$$
\underset{\substack{G_{1} \triangleleft{ }_{n} \\ H_{1} H_{2}}}{ }
$$

Figure 2. The results of graph gluing in different isomorphisms

This example shows that different isomorphisms could give different results or the same one. However, in some cases, it is possible that all isomorphisms give the same resulting graph. The next example will illustrate this fact.

Example 2. Consider the following $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$ showing in Figure 3. We obtain $H_{1}=\Delta(1,2,3) \subseteq G_{1}$ and $H_{2}=\Delta(a, b, c) \subseteq G_{2}$. There are six isomorphisms between H_{1} and H_{2}, but all of them give the same glued graph as shown in Figure 4.

Figure 3. $H_{1}=\Delta(1,2,3) \subseteq G_{1}$ and $H_{2}=\Delta(a, b, c) \subseteq G_{2}$

Figure 4. The unique resulting glued graph for any isomorphisms

In this particular case, we do not need to specify an isomorphism in the notation representing the glued graph, i.e, f can be omitted from the notation without ambiguity. Hence the glued graph notation can be written as $\underset{H_{1} \cong H_{2}}{G_{1} \triangleleft \triangleright G_{2}}$.

Next, we are going to introduce an example for the gluing of P_{3} and P_{4} in which a clone H is a trivial subgraph.

Example 3. Figure 5 shows the outcome of the gluing between P_{3} and P_{4} where H, a trivial subgraph of these two paths, is the clone. There are four non-isomorphic resulting graphs, namely A, B, C, and D.

Figure 5. Four non-isomorphic glued graphs of P_{3} and P_{4} at the clone H

In this paper, we shall enumerate all non-isomorphic resulting graphs obtained by the glue operator on paths. The following proposition about the number of vertices and edges of a glued graph is very useful for our study.

Proposition 1 ([6]). Let G_{1} and G_{2} be any two disjoint graphs. Let H be a clone of a glued graph $\underset{H}{ } \operatorname{G}_{1} \triangleright G_{2}$. Then

1. $\left|\underset{H}{H}\left(G_{1} \triangleleft \triangleright G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|-|V(H)|$, and
2. $\left|E\left(G_{1} \underset{H}{\triangleright} G_{2}\right)\right|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|-|E(H)|$.

3. Enumeration of Glued Graphs of Paths at Connected Clones

First of all, we should recall about some types of subgraphs. There are many kinds of them to be considered for an arbitrary graph. Table 1 as shown below illustrates the number of some specific subgraphs of a non-trivial path with $n=2,3,4,5,6$ vertices.

As previously stated, our original graphs for this paper are two non-trivial paths at any lengths which the considering clone is a connected subgraph of these paths. Let's recall that we use the following symbols for convenience. Let $m, n \in \mathbb{N}$. Let X and Y be subgraphs of P_{m} and P_{n}, respectively, such that $X \cong Y$. Let H be a clone of a glued graph.

Table 1. Numbers of some particular subgraphs of a path P_{n}

P_{n}	Number of non-isomorphic subgraphs			
	Connected subgraphs	Null graphs	Spanning subgraphs	All subgraphs
	2	2	2	3
P_{3}	3	3	3	6
P_{4}	4	4	5	11
P_{5}	5	5	7	18
P_{6}	6	6	11	29
P_{7}	7	7	15	44
P_{8}	8	8	22	66

We will denote by

$$
\begin{array}{ll}
P_{P_{X \cong} \triangleleft \triangleright} \unlhd P_{n} & : \text { a glued graph of } P_{m} \text { and } P_{n} \text { at } X \text { and } Y \text { with respect to } f ; \\
P_{m} \triangleleft \triangleright P_{n} & : \text { a glued graph of } P_{m} \text { and } P_{n} \text { at } X \text { and } Y ; \\
P_{m \cong Y} P_{H} \triangleleft P_{n} & : \text { a glued graph of } P_{m} \text { and } P_{n} \text { at a clone } H ; \\
\left(P_{m} \triangleleft \triangleright P_{n}\right)_{H} & : \text { a set of resulting glued graph of } P_{m} \text { and } P_{n} \text { at a clone } H ; \\
\left|\left(P_{m} \triangleleft \triangleright P_{n}\right)_{H}\right| & : \text { the number of elements in a set }\left(P_{m} \triangleleft \triangleright P_{n}\right)_{H} .
\end{array}
$$

Since P_{2} is a subgraph of P_{n} for all $n \in \mathbb{N}$ where $n \geq 2$, there are two common connected subgraphs of P_{2} and P_{n} which can be considered as a clone in the glued graph. The subgraphs are P_{1} and P_{2}. We see that P_{1} and P_{2} are subgraphs of both P_{2} and P_{n}. If we choose a graph having more than 2 vertices or more than an edge as a clone of a glued graph between P_{2} and P_{n}, then it might be a subgraph of P_{n}; but it is certainly not a subgraph of P_{2}. Such a case should not be considered.

We start with the problems of gluing P_{2} and P_{n}. We shall conclude the number of all distinct resulting glued graphs of P_{2} and P_{n} at connected clones.

Lemma 1. Let $2 \leq n \in \mathbb{N}$. If a graph P_{1} is a clone of a glued graph between P_{2} and P_{n}, then $\left|\left(P_{2} \triangleleft \triangleright P_{n}\right)_{P_{1}}\right|=\left\lceil\frac{n}{2}\right\rceil$.
Proof. Let X and Y be subgraphs of P_{2} and P_{n}, respectively, such that $X \cong Y \cong P_{1}$. Then there exist $|X||Y|=2 n$ possible isomorphisms between X and Y. Clearly, no matter which vertices are chosen in P_{2}, the isomorphism type of the glued graph is the same. Moreover, we obtain $\left\lceil\frac{n}{2}\right\rceil$ distinct resulting graphs since the symmetry of P_{n}. Hence the number of all non-isomorphic glued graphs between P_{2} and P_{n} with a clone P_{1} is equal to $\left\lceil\frac{n}{2}\right\rceil$.

Example 4. All resulting graphs obtained from the gluing between P_{2} and P_{n} at a clone P_{1} are shown in Figure 6. The glued vertex is indicated by the white circle. Due to the symmetry of a path graph, some of these results are not distinct.

Figure 6. Resulting glued graphs between P_{2} and P_{n} at a clone P_{1}

Lemma 2. Let $2 \leq n \in \mathbb{N}$. If a graph P_{2} is a clone of a glued graph between P_{2} and P_{n}, then $\left|\left(P_{2} \triangleleft \triangleright P_{n}\right)_{P_{2}}\right|=1$.
Proof. Let X and Y be subgraphs of P_{2} and P_{n}, respectively, such that $X \cong Y \cong P_{2}$. Then we have $X=P_{2}$ and $Y=P_{2} \subseteq P_{n}$. Thus the gluing of P_{2} and P_{n} at a clone P_{2} gives a unique resulting graph for any isomorphisms f between X and Y since $P_{2} \subseteq P_{n}$. So f can be embedded in a graph P_{n} for all $n \geq 2$. That is, the only result of the gluing is a graph P_{n}.

Similarly, we study the gluing of P_{3} and P_{n} at a common connected subgraph between them via an isomorphism. Since P_{3} is a subgraph of P_{n} for all $n \in \mathbb{N}$ where $n \geq 3$, we obtain three mutual connected subgraphs of P_{3} and P_{n} to be considered as a clone in the glued graph. The subgraphs are P_{1}, P_{2} and P_{3}. We will give the number of all distinct resulting glued graphs of P_{3} and P_{n} using the same method as in the study of P_{2} and P_{n}. We obtain the following results.

Lemma 3. Let $3 \leq n \in \mathbb{N}$. If a graph P_{1} is a clone of a glued graph between P_{3} and P_{n}, then $\left|\left(P_{3} \triangleleft \triangleright P_{n}\right)_{P_{1}}\right|= \begin{cases}2\left\lceil\frac{n}{2}\right\rceil-1 & \text { if } n=3, \\ 2\left\lceil\frac{n}{2}\right\rceil & \text { if } n>3 .\end{cases}$

Proof. Let P_{3} and P_{n} be paths with 3 and n vertices, respectively, where $n \geq 3$. Assume that $u_{1}, u_{2}, u_{3} \in V\left(P_{n}\right)$ and $v_{1}, v_{2}, \ldots, v_{n} \in V\left(P_{n}\right)$. Let X be a subgraph of P_{3} such that $X \cong N_{1}$, i.e., $|V(X)|=1$ and $|E(X)|=0$. Similarly, let Y be a subgraph of P_{n} such that $Y \cong N_{1}$, i.e., $|V(Y)|=1$ and $|E(Y)|=0$. We see that $X \cong Y \cong N_{1}$. Suppose that $V(X)=\left\{u_{i} \mid u_{i} \in V\left(P_{3}\right), \exists i \in\{1,2,3\}\right\}$ and $V(Y)=\left\{v_{j} \mid v_{j} \in V\left(P_{n}\right), \exists j \in\{1,2, \ldots, n\}\right\}$. Define $f_{i j}: V(X) \rightarrow V(Y)$ by $f_{i j}\left(u_{i}\right)=v_{j}$. We see that $f_{i j}$ is an isomorphism from X to Y. Since $\left|V\left(P_{3}\right)\right|=3$ and $\left|V\left(P_{n}\right)\right|=n$, there exist $3 n$ distinct isomorphisms between any subgraphs X and Y. We will denote by $G_{i j}$ a glued graph between P_{3} and P_{n} at X and Y with respect to $f_{i j}$, i.e.,

$$
G_{i j}:=\underset{X \cong f_{i j} Y}{P_{3} \triangleleft \triangleright P_{n} .}
$$

Firstly, we obtain $G_{1 j} \cong G_{3 j}$ for all $j \in\{1,2, \ldots, n\}$ due to the symmetry of P_{3}. Thus, without loss of generality, we can only consider $G_{i j}$ where $i \in\{1,2\}$. We also obtain that for each $i \in\{1,2\}$,
$G_{i j} \cong G_{i(n-j+1)}$ for all $j \in\{1,2, \ldots, n\}$. Thus, without loss of generality, we can only consider $G_{i j}$ where $i \in\{1,2\}$ and $j \in\left\{1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}$.

Case 1 (if $n>3$): By the construction of glued graphs between P_{3} and P_{n}, we see that $G_{i j}$ are all distinct. Hence we can conclude that the number of non-isomorphic glued graphs between P_{3} and P_{n}, where $n>3$, at X and Y with respect to any isomorphisms f is $2\left\lceil\frac{n}{2}\right\rceil$.

Case 2 (if $n=3$): The proof of this case is similar to the proof of Case 1, but there is a condition left to consider. From Case 1, we obtain the upper bound for the number of nonisomorphic glued graphs between P_{3} and P_{3} at X and Y with respect to any isomorphisms f is $2\left\lceil\frac{3}{2}\right\rceil=4$. It is easily checked that $G_{i j} \cong G_{j i}$ where $i, j \in\{1,2\}$ since $n=3$. That is, $G_{12} \cong G_{21}$. Thus the number of non-isomorphic glued graphs between P_{3} and P_{3} at a clone N_{1} with respect to any isomorphisms f is $2\left\lceil\frac{3}{2}\right\rceil-1=4-1=3$.

Lemma 4. Let $3 \leq n \in \mathbb{N}$. If a graph P_{2} is a clone of a glued graph between P_{3} and P_{n}, then $\left|\left(P_{3} \triangleleft \triangleright P_{n}\right)_{P_{2}}\right|=\left\lceil\frac{n}{2}\right\rceil$.
Proof. We see that the method of constructing glued graphs of P_{3} and P_{n} at a clone P_{2} is as same as in Lemma 1 of P_{2} and P_{n} at a clone P_{1}. Then we get the number of all non-isomorphic glued graphs.

Lemma 5. Let $3 \leq n \in \mathbb{N}$. If a graph P_{3} is a clone of a glued graph between P_{3} and P_{n}, then $\left|\left(P_{3} \triangleleft \triangleright P_{n}\right)_{P_{3}}\right|=1$.

Proof. It is similar to the proof of Lemma 2 since $P_{3} \subseteq P_{n}$ for all $n \geq 3$. So any isomorphisms f between P_{3} and Y such that $Y \cong P_{3}$ can be embedded in a graph P_{n}. Thus the only resulting graph is P_{n}.

Example 5. Table 2 here determines the numbers of distinct resulting glued graphs of P_{m} and P_{n}, where $m=2,3$, according to any isomorphisms between their common subgraphs.

By all the lemmas and example, the following results about the number of glued graphs of paths at connected clones are examined. We shall begin with some examples.

Notice that we study glued graphs that having P_{m} and P_{n} as original graphs, and P_{r} as their connected clone where $m, n, r \in \mathbb{N}$ and $r \leq m \leq n$.

Example 6. We consider if $r=1$. Then the subgraph is a null graph with one vertex, $P_{1} \dot{\mathrm{~W}}$ e have $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ ways to create a glued graph according to the isomorphism. We also obtain that resulting graphs are all distinct since each one is a graph with $m+n-1$ vertices and $m+n-2$ edges. Furthermore, a glued graph satisfies either one of the following conditions:
(1) degree of a glued vertex is equal to 2 ; or
(2) degree of a glued vertex is equal to 3 ; or
(3) degree of a glued vertex is equal to 4 .

Table 2. Numbers of all non-isomorphic glued graphs of P_{m} and P_{n} at connected clones

P_{n}	The number of non-isomorphic glued graphs				
	$\left\|\left(P_{2} \triangleleft \triangleright P_{n}\right)_{P_{1}}\right\|$	$\left\|\left(P_{2} \triangleleft \triangleright P_{n}\right)_{P_{2}}\right\|$	$\left\|\left(P_{3} \triangleleft \triangleright P_{n}\right)_{P_{1}}\right\|$	$\left\|\left(P_{3} \triangleleft \triangleright P_{n}\right)_{P_{2}}\right\|$	$\left\|\left(P_{3} \triangleleft \triangleright P_{n}\right)_{P_{3}}\right\|$
P_{2}	1	1	2	1	1
P_{3}	2	1	3	2	1
P_{4}	2	1	4	2	1
P_{5}	3	1	6	3	1
P_{6}	3	1	6	3	1
P_{7}	4	1	8	4	1
P_{8}	4	1	8	4	1
P_{9}	5	1	10	5	1
P_{10}	5	1	$2\left[\frac{n}{2}\right\rceil$ if $n>3$	$\left[\frac{n}{2}\right\rceil$	1
Conclusion	$\left[\frac{n}{2}\right.$				1

Example 7. We consider if $r=1$ and $m=n$. Similarly, we usually obtain $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{m}{2}\right\rceil$ ways to construct resulting graphs, but some isomorphisms give the same result. Therefore, the number of resulting graphs in this case is $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{m}{2}\right\rceil-\sum_{q=1}^{\left\lceil\frac{m}{2}\right\rceil-1} q$.

Lemma 6. Let $m, n \in \mathbb{N}$ be such that $m<n$. Let X and Y be subgraphs of P_{m} and P_{n}, respectively, such that $X \cong Y \cong P_{1}$. Then there exist $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ non-isomorphic glued graphs between P_{m} and P_{n} at X and Y with respect to the isomorphism f.

Proof. Let $m, n \in \mathbb{N}$ be such that $m<n$. Let $1 \leq i \leq m$ and $1 \leq j \leq n$. Let u_{i} be a vertex of P_{m} such that the distance from u_{i} to an endpoint of P_{m} is $i-1$. Then the distance from u_{i} to the other endpoint is $m-i$.

Without loss of generality, we can consider $1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil$ due to the symmetry of P_{m}.
Similarly, let v_{j} be a vertex of P_{n} such that the distance from v_{j} to an endpoint of P_{n} is $j-1$. Then the distance from v_{j} to the other endpoint is $n-j$. Also, without loss of generality, we can consider $1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$ due to the symmetry of P_{n}.

Let X and Y be subgraphs of P_{m} and P_{n}, respectively, such that $X \cong Y \cong P_{1}$. Define $f_{i j}: V(X) \rightarrow V(Y)$ by $f_{i j}\left(u_{i}\right)=v_{j}$. Thus there exist $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ isomorphisms $f_{i j}$ between X and Y.

Let $G_{i j}$ denote a glued graph between P_{m} and P_{n} at X and Y with respect to $f_{i j}$, i.e.,

$$
G_{i j}:=P_{m} \underset{\cong_{f_{i j}}}{\triangleleft \triangleright P_{n}}
$$

To show that $G_{i j} \nexists G_{k l}$ for $i, k \in\left\{1,2, \ldots,\left\lceil\frac{m}{2}\right\rceil\right\}$ and $j, l \in\left\{1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}$ so that we can conclude resulting graphs from the gluing between P_{m} and P_{n} can possibly be $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ non-isomorphic forms according to the isomorphisms.

Let $i, k \in\left\{1,2, \ldots,\left\lceil\frac{m}{2}\right\rceil\right\}$ and $j, l \in\left\{1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}$. We consider the graph isomorphism between $G_{i j}$ and $G_{k l}$ for three cases as follows:

Case 1: $i=k$ and $j \neq l$
Case 1.1: $i=k=1$ and $j \neq l$
Case 1.2: $i, k \neq 1, i=k$ and $j \neq l$;
Case 2: $i \neq k$ and $j=l$
Case 2.1: $i \neq k$ and $j=l=1$
Case 2.2: $i \neq k, j=l$ and $j, l \neq 1$;
Case 3: $i \neq k$ and $j \neq l$
Case 3.1: $(i=1$ or $k=1)$ and $(j=1$ or $l=1)$
Case 3.2: $(i=1$ or $k=1)$ and $j, l \neq 1$
Case 3.3: $i, k \neq 1$ and $(j=1$ or $l=1)$
Case 3.4: $i, j, k, l \neq 1$.
Next, we shall verify these following cases:
Case 1.1: Assume that $i=k=1$ and $j \neq l$.
1.1.1: Suppose that $j=1$. Then a glued graph $G_{1 j} \cong P_{m+n-1}$, i.e., $G_{1 j}$ has 2 endpoints. Also we get $l \neq 1$ and $G_{1 l}$ has 3 endpoints. Thus $G_{1 j} \not \equiv G_{1 l}$.
1.1.2: Suppose that $j \neq 1$ and $l \neq 1$. Then $G_{1 j}$ and $G_{1 l}$ are both glued graphs having 3 endpoints, say α, β, and γ. Suppose that w is the glued vertex of $G_{1 j}$ and z is the glued vertex of $G_{1 l}$. Then we have

$$
\begin{aligned}
& d(w, \alpha)=j-1, d(w, \beta)=m-1, \text { and } d(w, \gamma)=n-j ; \\
& d(z, \alpha)=l-1, d(z, \beta)=m-1, \text { and } d(z, \gamma)=n-l .
\end{aligned}
$$

It is easily seen that $G_{1 j} \not \neq G_{1 l}$ since $j \neq l$.
Case 1.2: Assume that $i, k \neq 1, i=k$ and $j \neq l$.
1.2.1: Suppose that $j=1$. Thus we get $l \neq 1$. Then $G_{i j}$ is a glued graph having 3 endpoints and $G_{i l}$ is a glued graph having 4 endpoints. So $G_{i j} \not \equiv G_{i l}$.
1.2.2: Suppose that $j \neq 1$ and $l \neq 1$. Then $G_{i j}$ and $G_{i l}$ are both glued graphs having 4 endpoints, say α, β, γ, and δ. Suppose that w is the glued vertex of $G_{i j}$ and z is the glued vertex of $G_{i l}$. Then we have

$$
\begin{aligned}
& d(w, \alpha)=i-1, d(w, \beta)=m-i, d(w, \gamma)=j-1, \text { and } d(w, \delta)=n-j ; \\
& d(z, \alpha)=k-1, d(z, \beta)=m-k, d(z, \gamma)=l-1, \text { and } d(z, \delta)=n-l .
\end{aligned}
$$

It is easily seen that $G_{i j} \neq G_{i l}$ since $j \neq l$.
Case 2.1: Assume that $i \neq k$ and $j=l=1$.
2.1.1: Suppose that $i=1$. Then a glued graph $G_{i 1} \cong P_{m+n-1}$, i.e., $G_{i 1}$ has 2 endpoints. Also we get $k \neq 1$ and $G_{k 1}$ has 3 endpoints. Thus $G_{i 1} \not \neq G_{k 1}$.
2.1.2: Suppose that $i \neq 1$ and $k \neq 1$. Then $G_{i 1}$ and $G_{k 1}$ are both glued graphs having 3 endpoints, say α, β, and γ. Suppose that w is the glued vertex of $G_{i 1}$ and z is the glued vertex of $G_{k 1}$. Then we have

$$
d(w, \alpha)=i-1, d(w, \beta)=m-i, \text { and } d(w, \gamma)=n-1 ;
$$

$$
d(z, \alpha)=k-1, d(z, \beta)=m-k, \text { and } d(z, \gamma)=n-1 .
$$

It is easily seen that $G_{i 1} \not \neq G_{k 1}$ since $i \neq k$.
Case 2.2: Assume that $i \neq k, j=l$ and $j, l \neq 1$.
2.2.1: Suppose that $i=1$. Thus we get $k \neq 1$. Then $G_{i j}$ is a glued graph having 3 endpoints and $G_{k j}$ is a glued graph having 4 endpoints. So $G_{i j} \not \approx G_{k j}$.
2.2.2: Suppose that $i \neq 1$ and $k \neq 1$. Then $G_{i j}$ and $G_{k j}$ are both glued graphs having 4 endpoints, say α, β, γ, and δ. Suppose that w is the glued vertex of $G_{i j}$ and z is the glued vertex of $G_{k j}$. Then we have

$$
\begin{aligned}
& d(w, \alpha)=i-1, d(w, \beta)=m-i, d(w, \gamma)=j-1, \text { and } d(w, \delta)=n-j ; \\
& d(z, \alpha)=k-1, d(z, \beta)=m-k, d(z, \gamma)=l-1, \text { and } d(z, \delta)=n-l .
\end{aligned}
$$

It is easily seen that $G_{i j} \not \equiv G_{k j}$ since $i \neq k$.
Case 3.1: Assume that ($i=1$ or $k=1$) and ($j=1$ or $l=1$).
Suppose that $i=1$. Thus we get $k \neq 1$. If $j=1$, then $G_{i j} \cong P_{m+n-1}$ and $G_{k l}$ is a glued graph having 4 endpoints. So $G_{i j} \not \not G_{k l}$. If $l=1$, then $G_{i j}$ and $G_{k l}$ are both glued graphs having 3 endpoints, say α, β, and γ. Suppose that w is the glued vertex of $G_{i j}$ and z is the glued vertex of $G_{k l}$. Then we have

$$
\begin{aligned}
& d(w, \alpha)=m-1, d(w, \beta)=j-1, \text { and } d(w, \gamma)=n-j ; \\
& d(z, \alpha)=k-1, d(z, \beta)=m-k, \text { and } d(z, \gamma)=n-1 .
\end{aligned}
$$

It is easily seen that $G_{i j} \neq G_{k l}$ since $m<n$.
Case 3.2: Assume that ($i=1$ or $k=1$) and $j, l \neq 1$.
Suppose that $i=1$. Thus we get $k \neq 1$. Then $G_{i j}$ is a glued graph having 3 endpoints and $G_{k l}$ is a glued graph having 4 endpoints. So $G_{i j} \neq G_{k l}$.
Case 3.3: Assume that $i, k \neq 1$ and $(j=1$ or $l=1$).
Suppose that $j=1$. Thus we get $l \neq 1$. Then $G_{i j}$ is a glued graph having 3 endpoints and $G_{k l}$ is a glued graph having 4 endpoints. So $G_{i j} \neq G_{k l}$.
Case 3.4: Assume that $i, j, k, l \neq 1$.
Thus we have $G_{i j}$ and $G_{k l}$ are both glued graphs having 4 endpoints, say α, β, γ, and δ. Suppose that w is the glued vertex of $G_{i j}$ and z is the glued vertex of $G_{k l}$. Then we have

$$
\begin{aligned}
& d(w, \alpha)=i-1, d(w, \beta)=m-i, d(w, \gamma)=j-1, \text { and } d(w, \delta)=n-j ; \\
& d(z, \alpha)=k-1, d(z, \beta)=m-k, d(z, \gamma)=l-1, \text { and } d(z, \delta)=n-l .
\end{aligned}
$$

It is easily seen that $G_{i j} \not \not G_{k l}$ since $i \neq k$ and $j \neq l$.
Hence $G_{i j} \not \not G_{k l}$ for $i, k \in\left\{1,2, \ldots,\left\lceil\frac{m}{2}\right\rceil\right\}$ and $j, l \in\left\{1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}$, and thus we obtain $\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ distinct resulting graphs from the gluing between P_{m} and P_{n} at a clone P_{1} with respect to the isomorphisms.

Therefore, we can conclude one of our main theorems.

Theorem 1. Let $m, n \in \mathbb{N}$ and $2 \leq m \leq n$. If a graph P_{1} is a clone of a glued graph between P_{m} and P_{n}, then

$$
\left|\left(P_{m} \triangleleft \triangleright P_{n}\right)_{P_{1}}\right| \leq \begin{cases}\left\lceil\frac{n}{2}\right\rceil & \text { if } m=n=2, \\ \left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil & \text { if } 2<m<n, \\ \left\lceil\frac{m}{2}\right\rceil^{2}-\sum_{q=1}^{\left\lceil\frac{m}{2}\right\rceil-1} q & \text { if } 2<m=n .\end{cases}
$$

Proof. We can conclude this theorem as follows:
Case 1 (if $m=n=2$): The result is clear by Lemma 1 .
Case 2 (if $2<m<n$): The proof implies from Lemma 6 .
Case 3 (if $2<m=n$): It follows from Example 7 .
Example 8. For $4 \leq n \in \mathbb{N}$. We obtain the following results:
If $n=4$, then $\left|\left(P_{4} \triangleleft \triangleright P_{n}\right)_{P_{1}}\right|=2\left\lceil\frac{n}{2}\right\rceil-1$.
Also, if $n>4$, then $\left|\left(P_{4} \triangleleft \triangleright P_{n}\right)_{P_{1}}\right|=2\left\lceil\frac{n}{2}\right\rceil$.
We see that these two statements satisfy Theorem1if we consider P_{1} as a clone of a glued graph between P_{4} and P_{n} for $n \geq 4$.

Furthermore, we see that $\left|\left(P_{2} \triangleleft \triangleright P_{n}\right)_{P_{2}}\right|=1$ where $n \geq 2$ and $\left|\left(P_{3} \triangleleft \triangleright P_{n}\right)_{P_{3}}\right|=1$ where $n \geq 3$ from Lemma 2 and Lemma5, respectively. Thus we give the following conclusion.

Theorem 2. Let $m, n \in \mathbb{N}$ and $2 \leq m \leq n$. If a graph P_{m} is a clone of a glued graph between P_{m} and P_{n}, then $\left|\left(P_{m} \triangleleft \triangleright P_{n}\right)_{P_{m}}\right|=1$.

Proof. The result is clear due to the embedding of P_{m} in P_{n}. There exists unique resulting glued graph between P_{m} in P_{n} at a clone P_{m}, which is always the graph P_{n}.

Next, we recommend a solution for being the useful tool in finding out the number of all non-isomorphic glued graphs of P_{m} and P_{n} at a non-trivial clone P_{r} where $1<r<m \leq n$.

Remark 1. A path P_{n} usually has $n-r+1$ subgraphs P_{r}.
Proof. Let $r, n \in \mathbb{N}$ where $2 \leq n$. The number of choosing a possible endpoint of P_{r} in P_{n} is $n-r+1$. Thus there exists another vertex of P_{n} which will be the other endpoint of P_{r}. Since P_{r} is an unlabelled undirected path, the symmetry of P_{r} gives $n-r+1$ distinct ways to choose P_{r}.

4. Characterization of Glued Graphs of Paths with Connected Clones

In this section, we obtain the structure of resulting glued graphs between P_{m} and P_{n} having a connected path P_{r} as a clone where $m, n, r \in \mathbb{N}$ and $r \leq m \leq n$. The result is an observation due to the construction of glued graphs.

Theorem 3. Let P_{m} and P_{n} be paths of m and n vertices, respectively. Let P_{r} be a clone of a glued graph between P_{m} and P_{n} where P_{r} is a non-trivial connected path of r vertices where
$2 \leq r \leq m \leq n$. Then a resulting graph is satisfying the following properties:

1. a glued graph between P_{m} and P_{n} is a simple graph with $m+n-r$ vertices and $m+n-r-1$ edges.
2. a glued graph between P_{m} and P_{n} is a tree with either one of the following conditions:
2.1. two endpoints with the degree sequence ($1,1,2,2,2, \ldots, 2$); or
2.2. three endpoints with the degree sequence ($1,1,1,2,2,2, \ldots, 2,3$); or
2.3. four endpoints with the degree sequence ($1,1,1,1,2,2,2, \ldots, 2,3,3$).

Proof. It is clear that all resulting graph obtaining from the gluing of two paths at any nontrivial connected clone is a tree. Thus it is a simple graph with $m+n-r$ vertices and $m+n-r-1$ edges by Proposition 1 . The degree sequence of a resulting graph depends on the glued vertices and its endpoints.

Corollary 1. Let P_{m} and P_{n} be paths with m and n vertices, respectively. Let P_{1} be a clone of a glued graph between P_{m} and P_{n}. Then a resulting graph is a tree with $m+n-1$ vertices and $m+n-2$ edges, satisfying either one of the followings:

1. the degree of the glued vertex is 2, and the degree sequence of a glued graph is ($1,1,2,2, \ldots, 2$);
2. the degree of the glued vertex is 3 , and the degree sequence of a glued graph is ($1,1,1,2,2, \ldots, 2,3$);
3. the degree of the glued vertex is 4, and the degree sequence of a glued graph is ($1,1,1,1,2,2, \ldots, 2,4$).

Proof. Similarly, it can be implied by Theorem 3 .

5. Conclusion

In this paper, we study the resulting graphs obtaining from the gluing on a pair of isomorphic subgraphs of two original paths. Due to varieties of the occurring forms, we hope that our results will be applicable to solve real-life problems such as finding the number of possible transit routes, planning an itinerary, or sorting out a location as the hub of activities.

Acknowledgment

This research was supported by Chiang Mai University, Chiang Mai 50200, Thailand.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] V. Boonthong, P. Putthapiban, P. Chaisuriya and P. Pacheenburawana, Eulerian glued graphs, Thai J. Math. 8(1) (2010), 103 - 109, URL http://thaijmath.in.cmu.ac.th/index.php/thaijmath/ article/view/307.
[2] J. L. Gross and J. Yellen, Graph Theory and Its Applications, 2nd ed., Chapman \& Hall, United States of America (2006), URL http://cds.cern.ch/record/902845.
[3] S. Malila, The Upper and Lower Independence Numbers of Glued Graphs of Cycles, Master Thesis, Mahidol University, Thailand (2014), URL: https://graduate.mahidol.ac.th/engine/ currentstudents/detail/abstract_view.php?id=5436612.
[4] J. Mekwian, Glued Graphs for Solving E-logistics Network Problems, Master Thesis, King Mongkut's Institute of Technology Ladkrabang, Thailand (2007), URL: http://newtdc.thailis or.th/docview. aspx?tdcid=330282.
[5] W. Pimpasalee and C. Uiyyasathian, Clique coverings of glued graphs at complete clone, Int. Math. Forum 5(24) (2010), 1155 - 1166, URL: https://pdfs.semanticscholar.org/e9a7/ 9935e33fda38cc4b168594f6f7e1f90a2d09.pdf.
[6] C. Promsakon, Colorability of Glued Graphs, master thesis, Chulalongkorn University, Thailand (2006), URL https://cuir.car.chula.ac.th/handle/123456789/15010.
[7] S. M. Seyyedi and F. Rahmati, Some properties of glued graphs at complete clone in the view of algebraic combinatorics, Sci. Int. (Lahore) 27(1) (2014), 39 - 47, URL: http://www.sci-int.com/pdf/112019674939-47\ -Seyyede\ Masoome\ Seyyedi\ \% 20COMPOSED\%20MATH.--IRAN-GP.pdf.
[8] C. Uiyyasathian, Maximal-Clique Partitions, Doctoral Thesis, University of Colorado at Denver, USA (2003), $39-42$, URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 93.4100\&rep=rep1\&type=pdf.
[9] C. Uiyyasathian and U. Jongthawonwuth, Clique partitions of glued graphs, J. Math. Research 2(2) (2010), 104 - 111, DOI: $10.5539 / \mathrm{jmr} . \mathrm{v} 2 \mathrm{n} 2 \mathrm{p} 104$.
[10] C. Uiyyasathian and S. Saduakdee, Perfect glued graph at complete clones, J. Math. Research 1(1) (2009), $25-30$, DOI: $10.5539 / \mathrm{jmr} . \mathrm{v} 1 \mathrm{n} 1 \mathrm{p} 25$
[11] R. Wilson and J. J. Watkins, Graphs: An Introductory Approach A First course in Discrete Mathematics, John Wiley \& Sons, United States of America (1990), URL: https://www.wiley.com/enus/Graphs\%3A+An+Introductory+Approach+A+First+Course+ in+Discrete+Mathematics-p-9780471615545.
[12] R. Wilson, Introduction to Graph Theory, 4th edition, Addison Wesley Longman Limited, England (1996), URL: https://pdfslide.net/documents/ robin-j-wilson-introduction-tograph-theory-4th-edition.html.

