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1. Introduction
One of the most important inequalities in mathematics is the famous Hölder inequality. This
inequality plays an important role in real/complex analysis, numerical analysis, probability
and statistics, differential equations and related fields. For any positive real number ai and bi ,
Hölder inequality states that

k∑
i=1

aibi 6
( k∑

i=1
ap

i

) 1
p
( k∑

i=1
bq

i

) 1
q
, (1)
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where 1
p + 1

q = 1 with p > 1. If p > 0 and 0< q < 1 with 1
q − 1

p = 1, then

k∑
i=1

aibi >
( k∑

i=1
a−p

i

)− 1
p
( k∑

i=1
bq

i

) 1
q
. (2)

Jensen [5] proved the following generalization of (1). For any positive real numbers ai j and p j

(16 i6 k, 16 j6 r) such that 1
p1

+·· ·+ 1
pr

= 1, we have

k∑
i=1

ai1 . . .air 6
( k∑

i=1
ap1

i1

) 1
p1 . . .

( k∑
i=1

apr
ir

) 1
p1 . (3)

Ando [2] generalized (1) and (2) to the context of positive definite matrices in which the product
is given by the Hadamard product (i.e. the entrywise product). Al-Zhour [1] established Hölder
type inequalities for Tracy-Singh and Khatri-Rao products of positive definite matrices.

It is natural to extend Hölder type inequalities to the context of bounded linear operators on
a Hilbert space. Thus, this work generalizes the inequalities (1) and (3) to the case of positive
operators in which the products are given by Tracy-Singh products (see [7]) and Khatri-Rao
products ([11]). We also obtain Cauchy-Schwarz type inequalities involving these products, and
some bounds of Tracy-Singh sums and Khatri-Rao sums as special cases. Furthermore, we
provide another versions of Cauchy-Schwarz inequality which are generalizations of Cauchy-
Schwarz inequality in Cn. In particular, our results include the matrix results in [1, 2] and
operator results in [3].

This paper is organized as follows. In Section 2, we explain the notions of Tracy-Singh
product, Khatri-Rao product, Tracy-Singh sum, and Khatri-Rao sum. In Section 3, we establish
Höder type inequalities involving Tracy-Singh products and Khatri-Rao products, and as a
consequence obtain some bounds for Tracy-Singh sums and Khatri-Rao sums. Operator versions
of Cauchy-Schwarz type inequalities involving Tracy-Singh products and Khatri-Rao products
are presented in Section 4. Finally, we conclude the paper in Section 5.

2. Preliminaries
Throughout, let H and K be Hilbert spaces over the complex field. Whenever X and Y are
Hilbert spaces, we denote by B(X ,Y ) the Banach space of bounded linear operators from X into
Y , and abbreviate B(X , X ) to B(X ). The identity operator on a space X is written by IX or I if
there is no ambiguity. Recall that an operator T ∈B(X ) is said to be positive if 〈Tx, x〉 > 0 for
all x ∈ X − {0}. For self-adjoint operators A,B ∈B(X ), the partial order A>B means that the
difference A−B is positive. We denote the set of positive (invertible positive) operators on X by
B(X )+ (B(X )++, respectively).

We decompose the Hilbert spaces H and K as direct sums of certain Hilbert spaces as follows:

H =
m⊕

i=1
Hi, K =

n⊕
j=1

K j.

Thus, any operator A ∈B(H) and B ∈B(K) can be expressed uniquely as operator matrices

A = [
A i j

]m,m
i, j=1 and B = [Bkl]

n,n
k,l=1

where A i j ∈B(H j,Hi) and Bkl ∈B(Kl ,Kk) for each i, j = 1, . . . ,m and k, l = 1, . . . ,n.
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Recall that the tensor product of A ∈B(H) and B ∈B(K), in a viewpoint of the universal
mapping property, is the unique bounded linear operator from A⊗B ∈B(H⊗K) such that

(A⊗B)(x⊗ y) = Ax⊗By, for all x ∈H, y ∈K.

The tensor product was generalized to the Tracy-Singh product [7] and the Khatri-Rao product
[11] as follows:

Definition 1. Let A = [A i j]
m,m
i, j=1 ∈B(H) and B = [Bkl]

n,n
k,l=1 ∈B(K) be operator matrices defined

as above. The Tracy-Singh product of A and B is defined to be the bounded linear operator

A�B = [[
A i j ⊗Bkl

]
kl

]
i j :

m,n⊕
i, j=1

Hi ⊗K j →
m,n⊕
i, j=1

Hi ⊗K j. (4)

When m = n, the Khatri-Rao product of A and B is defined to be the bounded linear operator

A �B = [
A i j ⊗Bi j

]
i, j :

n⊕
i=1

Hi ⊗Ki →
n⊕

i=1
Hi ⊗Ki. (5)

Note that if m = n = 1, then A�B = A �B = A⊗B. When H and K are finite-dimensional
inner product spaces, these constructions reduce to the Tracy-Singh product and the Khatri-Rao
product of matrices, respectively.

Lemma 1 ([7,8]). Let A,C ∈B(H) and B,D ∈B(K) be compatible operator matrices. Then

(i) The map (A,B)→ A�B is bilinear and jointly continuous.

(ii) (A�B)∗ = A∗�B∗.

(iii) (A�B)(C�D)= AC�BD.

(iv) If A and B are invertible, then (A�B)−1 = A−1�B−1.

(v) If A,B> 0, then (A�B)α = Aα�Bα for any α> 0.

(vi) If A,B> 0, then A�B> 0.

For each i = 1, . . . , r, let Hi be a Hilbert space and decompose Hi =⊕ni
j=1Hi, j where all Hi, j are

Hilbert spaces. We set �1
i=1 A i = A1 =�1

i=1 A i . For r ∈N− {0} and a finite number of operators
A i ∈B(Hi) for i = 1, . . . , r, we denote

r

�
i=1

A i = ((A1�A2)� · · ·�Ar−1)�Ar,
r

�
i=1

A i = ((A1 � A2)� · · ·� Ar−1)� Ar.

Lemma 2 ([10]). There exists an isometry Z such that
r

�
i=1

A i = Z∗
( r

�
i=1

A i

)
Z

for any A i ∈B(Hi), i = 1, . . . , r.

The notions of the Tracy-Singh sum and the Khatri-Rao sum, introduced in [6, 12], are
defined as follows:
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Definition 2. Let A = [
A i j

]n,n
i, j=1 ∈B(H) and B = [Bkl]

m,m
k,l=1 ∈B(K). We define the Tracy-Singh

sum of A and B to be the bounded linear operator

A�B = A� IK+ IH�B :
m,n⊕
i, j=1

Hi ⊗K j →
m,n⊕
i, j=1

Hi ⊗K j. (6)

When m = n, we define the Khatri-Rao sum of A and B to be the bounded linear operator

A �B = A � IK+ IH�B :
n⊕

i=1
Hi ⊗Ki →

n⊕
i=1

Hi ⊗Ki. (7)

If m = n = 1, the Tracy-Singh sum reduces to the tensor sum.

3. Hölder Type Inequalities Involving Tracy-Singh Products and
Khatri-Rao Products

Recall that the harmonic mean of A,B ∈B(H)++ is defined by

A !B = 2
(
A−1 +B−1)−1

.

Lemma 3 (see e.g. [4]). The map (A,B) 7→ A !B is concave on B(H)++×B(H)++.

Lemma 4. For each r ∈ (0,1), the following map is concave on B(H)+×B(K)+:

(A,B) 7→ Ar�B1−r. (8)

Proof. Recall that the operator monotone function xr has an integral representation

xr = sin rπ
π

∫
[0,∞]

xtr−1

x+ t
dt.

By continuity, we may assume that A,B ∈B(H)++. We have by Lemma 1 that

Ar�B1−r = (Ar�B−r)(I�B) = (A�B−1)r(I�B).

Using the functional calculus for A�B−1 and Lemma 1, we have

Ar�B1−r =
{

sin rπ
π

∫
[0,∞]

(A�B−1)(tI� I)r−1(A�B−1 + tI� I)−1 dt
}

(I�B)

= sin rπ
π

∫
[0,∞]

tr−1(A−1�B)−1(A�B−1 + tI� I)−1(I�B−1)−1 dt

= sin rπ
π

∫
[0,∞]

tr−1 [
(I�B−1)(A�B−1 + tI� I)(A−1�B)

]−1 dt

= sin rπ
π

∫
[0,∞]

tr−1 [
(I�B)−1 + (t−1A� I)−1]−1 dt

= sin rπ
2π

∫
[0,∞]

tr−1 [
(t−1A� I) ! (I�B)

]
dt.

By Lemma 3, the map (A� I, I�B) 7→ (t−1A� I) ! (I�B) is concave. Since the map (A,B) 7→
(A� I, I�B) is linear, the map (A,B) 7→ (t−1A� I) ! (I�B) is concave. It is well-known that
any nonnegative linear combination of concave maps is concave. As the integral is the limit of
nonnegative linear combinations, the map (A,B) 7→ Ar�B1−r is concave. Since the Tracy-Singh
product is jointly continuous, this map is also concave on B(H)+×B(K)+.
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We obtain Hölder type inequality for positive operators as follows.

Theorem 1. For each i = 1, . . . ,k, let A i ∈B(H)+ and Bi ∈B(K)+. If p, q> 1 and 1
p + 1

q = 1, then

k∑
i=1

(A i�Bi) 6
( k∑

i=1
Ap

i

) 1
p
�

( k∑
i=1

Bq
i

) 1
q
, (9)

k∑
i=1

(A i �Bi) 6
( k∑

i=1
Ap

i

) 1
p
�

( k∑
i=1

Bq
i

) 1
q
. (10)

Proof. Let us prove (9) by induction on k. Clearly, (9) holds for k = 1. Now, assume that( k∑
i=1

Ap
i

) 1
p
�

( k∑
i=1

Bq
i

) 1
q
>

k∑
i=1

(A i�Bi).

Consider X1, X2 ∈B(H)+ and Y1,Y2 ∈B(K)+. By Lemma 4, we have that for any α, r ∈ (0,1),

(αX1 + (1−α)X2)r� (αY1 + (1−α)Y2)1−r > α
(
X r

1�Y 1−r
1

)+ (1−α)
(
X r

2�Y 1−r
2

)
Setting α= 1/2 and r = 1/p, we have

(X1 + X2)
1
p � (Y1 +Y2)

1
q > X

1
p

1 �Y
1
q

1 + X
1
p

2 �Y
1
q

2 .

Replacing X i by X p
i and Yi by Y q

i , we get

(X p
1 + X p

2 )
1
p � (Y q

1 +Y q
2 )

1
q > X1�Y1 + X2�Y2. (11)

Applying (11) and the inductive hypothesis, we have( k+1∑
i=1

Ap
i

) 1
p
�

( k+1∑
i=1

Bq
i

) 1
q =

{( k∑
i=1

Ap
i

)
+ Ap

k+1

} 1
p

�

{( k∑
i=1

Bq
i

)
+Bq

k+1

} 1
q

>
( k∑

i=1
Ap

i

) 1
p
�

( k∑
i=1

Bq
i

) 1
q + (Ap

k+1)
1
p � (Bq

k+1)
1
q

>
k∑

i=1
(A i�Bi)+ Ak+1�Bk+1

=
k+1∑
i=1

(A i�Bi).

Thus, (9) holds for any k ∈N. Using Lemma 2 together with (9), we have
k∑

i=1
(A i �Bi) = Z∗

{
k∑

i=1
(A i�Bi)

}
Z

6 Z∗


(
k∑

i=1
Ap

i

) 1
p

�

(
k∑

i=1
Bq

i

) 1
q
Z

=
(

k∑
i=1

Ap
i

) 1
p

�

(
k∑

i=1
Bq

i

) 1
q

.

Notice that Theorem 1 can be viewed generalization of [1, Theorem 1 and Corollary 2] and
[2, Theorem 14] to the case of operators.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 531–540, 2019



536 Hölder Type Inequalities Involving Tracy-Singh Products. . . : A. Ploymukda and P. Chansangiam

In the next corollary, we generalize Hölder’s type inequality of real numbers (3) and matrices
[1, Corollaries 3 and 4] to the case of operators.

Corollary 1. For each 16 i6 k,16 j6 r, let A i j ∈B(H)+ and p j > 1 with
∑r

j=1
1
p j

= 1. Then

k∑
i=1

( r

�
j=1

A ir

)
6

r

�
j=1

( k∑
i=1

Ap j
i

) 1
p j , (12)

k∑
i=1

( r

�
j=1

A ir

)
6

r

�
j=1

( k∑
i=1

Ap j
i

) 1
p j . (13)

Proof. Let us prove (12) by induction on r. Clearly, (12) is true in the case r = 1. Suppose
k∑

i=1

( r

�
j=1

A i j

)
6

r

�
j=1

( k∑
i=1

Aα j
i

) 1
α j ,

where α j > 1 for j = 1, . . . , r with
∑r

j=1
1
α j

= 1. Set p = pr+1
pr+1−1 and q j = p j

p for j = 1, . . . , r. We have
by Theorem 1 and Lemma 1 that

k∑
i=1

( r+1

�
j=1

A i j

)
=

k∑
i=1

[( r

�
j=1

A i j

)
�A i(r+1)

]
6

[ k∑
i=1

( r

�
j=1

Ap
i j

)] 1
p
�

[ k∑
i=1

Apr+1
i(r+1)

] 1
pr+1 .

Since
∑r

j=1
1
q j

= 1, we have by the inductive hypothesis that

k∑
i=1

( r+1

�
j=1

A i j

)
6

[ r

�
j=1

( k∑
i=1

(
Ap

i j

)q j
) 1

q j
] 1

p
�

[ k∑
i=1

Apr+1
i(r+1)

] 1
pr+1

=
[ r

�
j=1

( k∑
i=1

Apq j
i j

) 1
pq j

]
�

[ k∑
i=1

Apr+1
i(r+1)

] 1
pr+1

=
[ r

�
j=1

( k∑
i=1

Ap j
i j

) 1
p j

]
�

[ k∑
i=1

Apr+1
i(r+1)

] 1
pr+1

=
r+1

�
j=1

( k∑
i=1

Ap j
i j

) 1
p j .

By Lemma 2, we reach the second inequality.

In the next result, we provide upper bounds for the Tracy-Singh sum and Khatri-Rao sum.

Corollary 2. Let A ∈B(H)+ and B ∈B(K)+. If p, q> 1 and
1
p
+ 1

q
= 1, then

A�B 6 (Ap + I)
1
p � (Bq + I)

1
q , (14)

A �B 6 (Ap + I)
1
p � (Bq + I)

1
q . (15)

Proof. Setting k = 2 and taking A1 = A, A2 = I, B1 = I and B2 = B in Theorem 1, we reach the
results.
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Lemma 5. For each r ∈ (0,1), the following map is convex on B(H)++×B(K)++:

(A,B) 7→ A−r�B1+r. (16)

Proof. We have by Lemma 1 that

A−r�B1+r = (
A−r�Br) (I�B) = (

A−1�B
)r

(I�B).

We have

A−r�B1+r =
{

sin rπ
π

∫
[0,∞]

(A−1�B)(tI� I)r−1(A−1�B+ tI� I)−1 dt
}

(I�B)

= sin rπ
π

∫
[0,∞]

tr−1 [
(A−1�B+ tI� I)(A�B−1)

]−1
(I�B)dt

= sin rπ
π

∫
[0,∞]

tr−1 [
I� I + tA�B−1]−1

(I�B)dt

= sin rπ
π

∫
[0,∞]

tr−1 [
(I�B+ tA� I)(I�B−1)

]−1
(I�B)dt

= sin rπ
π

∫
[0,∞]

tr−1(I�B) [I�B+ tA� I]−1 (I�B)dt.

Since the map A 7→ A−1 is convex and the map (A,B) 7→ tA� I + I�B is affine, the map

(A,B) 7→ (I�B)[tA� I + I�B]−1(I�B)

is convex. Thus, the map (A,B) 7→ A−r�B1+r is convex.

Theorem 2. For each i = 1, . . . ,k, let A i ∈ B(H)++ and Bi ∈ B(K)++. If p > 1 > q > 1
2 and

1
q − 1

p = 1, then

k∑
i=1

(A i�Bi) >
( k∑

i=1
A−p

i

)− 1
p
�

( k∑
i=1

Bq
i

) 1
q
, (17)

k∑
i=1

(A i �Bi) >
( k∑

i=1
A−p

i

)− 1
p
�

( k∑
i=1

Bq
i

) 1
q
. (18)

Proof. Let us prove this theorem by induction on k. It is obvious that (17) is true for k = 1. For
the inductive step, assume that( k∑

i=1
A−p

i

)− 1
p
�

( k∑
i=1

Bq
i

) 1
q
6

k∑
i=1

(A i�Bi).

Consider X1, X2 ∈B(H)++ and Y1,Y2 ∈B(K)++. By Lemma 5, the map (X ,Y ) 7→ X− 1
p �Y

1
q is

convex. Then

(X1 + X2)−
1
p � (Y1 +Y2)

1
q 6 X

− 1
p

1 �Y
1
q

1 + X
− 1

p
2 �Y

1
q

2 .

Replacing X i by X−p
i and Yi by Y q

i , we have

(X−p
1 + X−p

2 )−
1
p � (Y q

1 +Y q
2 )

1
q 6 X1�Y1 + X2�Y2. (19)
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It follows from (19) and inductive hypothesis that( k+1∑
i=1

A−p
i

)− 1
p
�

( k+1∑
i=1

Bq
i

) 1
q =

{( k∑
i=1

A−p
i

)
+ A−p

k+1

}− 1
p

�

{( k∑
i=1

Bq
i

)
+Bq

k+1

} 1
q

6
( k∑

i=1
A−p

i

)− 1
p
�

( k∑
i=1

Bq
i

) 1
q + (A−p

k+1)−
1
p � (Bq

k+1)
1
q

6
k∑

i=1
(A i�Bi)+ Ak+1�Bk+1

=
k+1∑
i=1

(A i�Bi).

Therefore, (12) holds for any k ∈N. We reach (18) by applying (17) and Lemma 2.

Notice that Theorem 2 is an operator extension of [1, Theorem 2 and Corollary 5] and
[2, Theorem 14].

Corollary 3. Let A ∈B(H)++ and B ∈B(K)++. If p> 1> q>
1
2

and
1
q
− 1

p
= 1, then

A�B > (A−p + I)−
1
p � (Bq + I)

1
q , (20)

A �B > (A−p + I)−
1
p � (Bq + I)

1
q . (21)

4. Cauchy-Schwarz Type Inequalities Involving Tracy-Singh Products
and Khatri-Rao Products

The Cauchy-Schwarz inequality is a special case of Hölder’s inequality (1). This inequality
states that for any real numbers ai and bi ,

k∑
i=1

aibi 6

(
k∑

i=1
a2

i

) 1
2
(

k∑
i=1

b2
i

) 1
2

. (22)

Taking p = q = 2 in Theorem 1, we obtain Cauchy-Schwarz inequalities involving Tracy-Singh
products and Khatri-Rao products as the following.

Corollary 4. For each i = 1, . . . ,k, let A i ∈B(H)+ and Bi ∈B(K)+. Then
k∑

i=1
(A i�Bi) 6

( k∑
i=1

A2
i

) 1
2
�

( k∑
i=1

B2
i

) 1
2
, (23)

k∑
i=1

(A i �Bi) 6
( k∑

i=1
A2

i

) 1
2
�

( k∑
i=1

B2
i

) 1
2
. (24)

In any Hilbert space H, the Cauchy-Schwarz inequality states that

|〈x, y〉| 6 ‖x‖‖y‖ (25)

for every x, y ∈H. We can rewrite (25) to

〈x, y〉〈y, x〉+〈y, x〉〈x, y〉 6 〈x, x〉〈y, y〉+〈y, y〉〈x, x〉.
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For any x, y ∈Cn, we have

(x∗y)(y∗x)+ (y∗x)(x∗y) 6 (x∗x)(y∗y)+ (y∗y)(x∗x). (26)

Fujii [3] gave operator extensions of (26) in which the products are given by the tensor product
and the Hadamard product. In the next result, we generalize (26) to the Tracy-Singh product
and the Khatri-Rao product of operators.

Proposition 1. Let A,B ∈B(H,K). Then

(A∗B)� (B∗A)+ (B∗A)� (A∗B) 6 (A∗A)� (B∗B)+ (B∗B)� (A∗A), (27)

(A∗B)� (B∗A)+ (B∗A)� (A∗B) 6 (A∗A)� (B∗B)+ (B∗B)� (A∗A). (28)

Proof. This proof is quite similar to [3, Theorem 2.2]. Applying Lemma 1 we have

0 6 (A�B−B�A)∗(A�B−B�A)

= (A∗�B∗−B∗�A∗)(A�B−B�A)

= (A∗�B∗)(A�B)− (A∗�B∗)(B�A)− (B∗�A∗)(A�B)+ (B∗�A∗)(B�A)

= (A∗A)� (B∗B)− (A∗B)� (B∗A)− (B∗A)� (A∗B)+ (B∗B)� (A∗A).

We reach the second inequality by using Lemma 2.

5. Conclusion
We extend Hölder type inequalities for positive real numbers to the context of positive operators
on a Hilbert space. The concavity and convexity of certain maps are established via suitable
integral representations of the associated operator-monotone functions. We obtain Hölder
type inequalities for Hilbert space operators concerning Tracy-Singh products and Khatri-Rao
products via these maps. We also establish Caucy-Schwarz inequalities concerning Tracy-Singh
products and Khatri-Rao products. Consequently, we get lower bounds and upper bounds
for Tracy-Singh sums and Khatri-Rao sums of operators. Furthermore, we provide another
versions of Cauchy-Schwarz inequality involving Tracy-Sing products and Khatri-Rao products.
The results in this paper concerning the Tracy-Singh product include operator results concerning
the tensor product, and matrix results concerning the Tracy-Singh product and the Kronecker
product. Our results involving the Khatri-Rao product include operator results involving the
tensor product, and matrix results involving the Khatri-Rao product, the Kronecker product
and the Hadamard product. Our results regarding the Tracy-Singh sum include operator
results regarding the tensor sum, and matrix results regarding the Kronecker sum. Our results
concerning the Khatri-Rao sum include operator results regarding the tensor sum, and matrix
results regarding the Khatri-Rao sum, the Kronecker sum and the Hadamard sum. In particular,
our works include Hölder/Cauchy-Schwarz type inequalities in [1–3].
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