Characterization of Joined Graphs

C. Promsakon

Abstract

The join of simple graphs G_{1} and G_{2}, written by $G_{1} \vee G_{2}$, is the graph obtained from the disjoint union between G_{1} and G_{2} by adding the edges $\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$. We call a simple graph G as a joined graph if there are G_{1} and G_{2} that $G=G_{1} \vee G_{2}$. In this paper, we give conditions to determine that which graphs are joined graphs and use its properties to investigate the chromatic number of joined graphs.

1. Introduction and Preliminaries

In this paper, graphs must be simple graphs which can be trivial graphs but not empty graphs. We follow West [2] for terminologies and notations not defined here. Let G_{1} and G_{2} be any two graphs. The join of graphs G_{1} and G_{2}, written by $G_{1} \vee G_{2}$, is the graph obtained from the disjoint union between G_{1} and G_{2} by adding the edges $\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$.

We call a simple graph G as a joined graph if there are G_{1} and G_{2} that $G=G_{1} \vee G_{2}$. Clearly that G_{1} and G_{2} are subgraphs of $G_{1} \vee G_{2}$. If a graph G is a joined graph of G_{1} and $G_{2}, G=G_{1} \vee G_{2}$, we refer G_{1} and G_{2} as factors of G.

In generally, we may define $G_{1} \vee G_{2} \vee G_{3}$ as $G_{1} \vee\left(G_{2} \vee G_{3}\right)$. We note here that $G_{1} \vee\left(G_{2} \vee G_{3}\right)=G_{1} \vee G_{2} \vee G_{3}=\left(G_{1} \vee G_{2}\right) \vee G_{3}$ where G_{1}, G_{2} and G_{3} are graphs.

Figure 1. $K_{4} \vee K_{3}=K_{2} \vee K_{2} \vee K_{3}$

Theorem 1.1. Let G_{1} and G_{2} be graphs. If H_{1} and H_{2} are subgraphs of G_{1} and G_{2}, respectively, then $H_{1} \vee H_{2} \subseteq G_{1} \vee G_{2}$.

2000 Mathematics Subject Classification. 05C75.
Key words and phrases. Joined graphs.

Proof. Let G_{1} and G_{2} be graphs. Assume that H_{1} and H_{2} are subgraphs of G_{1} and G_{2}, respectively. Clearly that $V\left(H_{1} \vee H_{2}\right) \subseteq V\left(G_{1} \vee G_{2}\right)$. Next, let e be an edge in $H_{1} \vee H_{2}$ with endpoints u and v. If $u, v \in V\left(H_{1}\right)$, then $e \in E\left(H_{1}\right) \subseteq E\left(G_{1}\right) \subseteq E\left(G_{1} \vee\right.$ G_{2}). Similarly, If $u, v \in V\left(H_{2}\right)$, then $e \in E\left(H_{2}\right) \subseteq E\left(G_{2}\right) \subseteq E\left(G_{1} \vee G_{2}\right)$. Suppose that $u \in V\left(H_{1}\right)$ and $v \in V\left(H_{2}\right)$. So $e \in\left\{u v: u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\} \subseteq E\left(G_{1} \vee G_{2}\right)$. Therefore $H_{1} \vee H_{2} \subseteq G_{1} \vee G_{2}$.

In [3], There are Theorems about property of joined graphs as follow
Theorem 1.2. Any joined graphs are always connected.
Theorem 1.3. Any joined graphs are bipartite graphs or contain K_{3}.
By applying Theorem 1.2 and Theorem 1.3, we have necessary conditions to be a joined graph as Theorem 1.4.

Theorem 1.4. Let G be a graph. If G has properties that
(i) G is not connected or
(ii) G is not a bipartite graph and have no K_{3} or
(iii) girth of G are not $\infty, 3$ or 4 ,
then G is not a joined graph.
Because $\overline{K_{n}}$ where $n \in \mathbb{N}$ is not connected, so $\overline{K_{n}}$ is not a joined graph. Since girth of $C_{2 n}$ where $n \in \mathbb{N}$ and $n>2$ is $2 n$, we have that $C_{2 n}$ is not a joined graph. We can conclude that C_{4} is the only one bipartite graph that is a joined graph where $C_{4}=\overline{K_{2}} \vee \overline{K_{2}}$.

We end this section by giving the Theorem about complement of graphs to use in the next section.

Theorem 1.5. Let G be a graph and let H be a spanning subgraph of G. We have $\bar{G} \subseteq \bar{H}$.

Proof. Let G be a graph and let H be a spanning subgraph of G. Clearly that $n(\bar{G}=$ $n(\bar{H}$. Let e be an edge in \bar{G} with endpoints u and v. Then $u, v \in V(G)=V(H)$ and u is not adjacent to v in G. Since H is a subgraph of G, we have u is not adjacent to v in H. So $e \in E(H)$. Hence $\bar{G} \subseteq \bar{H}$.

2. Necessary and Sufficient Conditions

We begin this section by giving the definition of operator + and a relation between + and \vee. Let G_{1} and G_{2} be distinct two graphs. The sum of G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is the graph that $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Clearly that $G_{1}, G_{2} \subseteq G_{1}+G_{2} \subseteq G_{1} \vee G_{2}$.

Theorem 2.1. For any graphs G_{1} and $G_{2}, \overline{G_{1} \vee G_{2}}=\overline{G_{1}}+\overline{G_{2}}$.

Proof. Let G_{1} and G_{2} be graphs. By the definition of the sum of graph, we have $\overline{G_{1}}+\overline{G_{2}} \subseteq \overline{G_{1} \vee G_{2}}$. Next, let $e \in E\left(\overline{G_{1} \vee G_{2}}\right)$ with endpoints u and v. So u and v are not adjacent in $G_{1} \vee G_{2}$. Hence $u, v \in V\left(G_{1}\right)$ or $u, v \in V\left(G_{2}\right)$. Without of loss generality, we may assume that $u, v \in V\left(G_{1}\right)$. Since $G_{1} \subseteq G_{1} \vee G_{2}$, we have u and v are not adjacent in G_{1}. Thus $e \in \overline{G_{1}} \subseteq \overline{G_{1}}+\overline{G_{2}}$. Therefore $\overline{G_{1} \vee G_{2}}=\overline{G_{1}}+\overline{G_{2}}$.

In the previous section, we have only necessary conditions to be a joined graph. We next show the sufficient conditions.

Theorem 2.2. For any graph G, the following are equivalent(and characterize the joined graph).
(i) G is a joined graph.
(ii) G have a spanning complete bipartite as a subgraph.
(iii) \bar{G} is a disconnected graph.

Proof. Let G be a graph.
(i) \rightarrow (ii) Assume that G is a joined graph. Let G_{1} and G_{2} be graphs that $G=G_{1} \vee G_{2}$. So $n\left(G_{1}\right)+n\left(G_{2}\right)=n(G)$. Let G_{i}^{\prime} be a graph obtained by deleting all edges in G_{i} for all $i=1,2$. Then $G_{1}^{\prime} \subseteq G_{1}$ and $G_{2}^{\prime} \subseteq G_{2}$. By Theorem 1.1, we have $G_{1}^{\prime} \vee G_{2}^{\prime} \subseteq G_{1} \vee G_{2}=G$ and $n\left(G_{1}^{\prime}\right)+n\left(G_{2}^{\prime}\right)=n\left(G_{1}\right)+n\left(G_{2}\right)=n(G)$. Therefore G have a spanning complete bipartite, $G_{1}^{\prime} \vee G_{2}^{\prime}$, as a subgraph.
(ii) \rightarrow (iii) Assume that G have a spanning complete bipartite as a subgraphs, called $H \cong K_{m, n}$ where $m+n=n(G)$. By Theorem 1.5 , we have $\bar{G} \subseteq \bar{H} \cong \overline{K_{m, n}}$. Clearly that $\bar{H} \cong \overline{K_{m, n}}$ is disconnected. Therefore \bar{G} is a disconnected graph.
(iii) \rightarrow (i) We assume that \bar{G} is a disconnected graph. Let H be a connected induce subgraph of \bar{G}. So $\bar{G}=H+\bar{G} \backslash H$. By Theorem 2.1, we have that $\bar{G}=H+\bar{G} \backslash H=\overline{\bar{H} \vee \overline{\bar{G} \backslash H}}$. Hence $G=\bar{H} \vee \overline{\bar{G} \backslash H}$. Therefore G is a joined graph.

Corollary 2.3. Let G be a graph. If $n(G)+e(G)>\frac{n(n-1)}{2}+1$, then G is a joined graph.
Proof. Let G be a graph. We assume that $n(G)+e(G)>\frac{n(n-1)}{2}+1$. We know that $e(\bar{G})=\frac{n(n-1)}{2}-e(G)$. So $e(\bar{G})=\frac{n(n-1)}{2}-e(G)<n(G)-1=n(\bar{G})-1$. Hence \bar{G} is not a connected graph. Therefore G is a joined graph by Theorem 2.2.

The converse of Corollary 2.3 is not true. For example, K_{2} is a joined graph but $n\left(K_{2}\right)+e\left(K_{2}\right)=3=\frac{2(1)}{2}+1$.

Because the complement of the Petersen graph is a connected graph, so we can conclude that the Petersen graph is not a joined graph (see Figure 2).

3. Joined Graphs and It's Chromatic Number

To find the chromatic number of a graph, we use clique number to be a lover bound and find a proper coloring to get a upper bound. Sometime, it's not easy to

Figure 2. The complement of the Petersen graph
find a clique number for a graph with many edges as Example 3.2, but if we know that a graph is a joined graph, we can find the chromatic number of that graph easier by the next Theorem.

Theorem 3.1. Let G_{1} and G_{2} be graphs. Then $\chi\left(G_{1} \vee G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.
Proof. Let G_{1} and G_{2} be graphs. Let f and g be proper colorings of G_{1} and G_{2}, respectively. Define $\alpha: V\left(G_{1}\right) \cup V\left(G_{2}\right) \rightarrow\left\{1,2 \ldots, \chi\left(G_{1}\right)+\chi\left(G_{2}\right)\right\}$ by for all $v \in G_{1} \cup V\left(G_{2}\right)$

$$
\alpha(v)= \begin{cases}f(v) & \text { if } v \in V\left(G_{1}\right) \\ \chi\left(G_{1}\right)+g(v) & \text { if } v \in V\left(G_{2}\right)\end{cases}
$$

It is easy to see that α is proper. So $\chi\left(G_{1} \vee G_{2}\right) \leq \chi\left(G_{1}\right)+\chi\left(G_{2}\right)$. Suppose that $\chi\left(G_{1} \vee G_{2}\right)<\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$. There exist $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$ such that $\alpha(u)=\alpha(v)$. So u and v are not adjacent in $G_{1} \vee G_{2}$. This contradicts to the definition of the join graphs. Hence $\chi\left(G_{1} \vee G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.

We know that Wheel with n vertices, denote by W_{n}, is a joined graph where $W_{n}=C_{n-1} \vee K_{1}$. Since $\chi\left(C_{n-1}\right)=2$ or 3 , then by Theorem 3.1 we have that

$$
\chi\left(W_{n}\right)= \begin{cases}3, & \text { if } n \text { is an even integer } \\ 4, & \text { if } n \text { is an odd integer }\end{cases}
$$

Example 3.2. Let G be a graph as Figure 3. We can see that \bar{G} is disconnected. By Theorem 2.2, we have G is a joined graph.

Next, we find factors of G. By following the proof of Theorem 2.2, we get that factors of G are the complement of it's component. So we have factors of G as Figure 4. So $G=H_{1} \vee H_{2} \vee H_{3}$ where H_{1}, H_{2} and H_{3} are factors of G. Hence $\chi(G)=\chi\left(H_{1}\right)+\chi\left(H_{2}\right)+\chi\left(H_{3}\right)=2+3+2=7$.

We conclude the results here that a jointed graph is a graph that its complement is disconnected graph and chromatic number of jointed graph is equal to the sum of chromatic number of their factors.

Figure 3. A graph G and it's complement

H_{1}

H_{2}

H_{3}

Figure 4. Factors of G

References

[1] C. Promsakon, Colorability of Glued Graphs, Master Degree Thesis, Chulalongkorn University.
[2] B. W. Douglas, Introduction to Graph Theory, Prentice-Hall Inc., 2001.
[3] T. Sitthiwiratham and C. Promsakon, Planarity of joined graphs, Journal of Discrete Mathematical Sciences and Cryptography 12(1) (Febraury 2009), 63-69.
C. Promsakon, Department of Mathematics, Faculty of Applied Science King Mongkut's University of Technology North Bongkok, Thailand, 10800.
E-mail: promsakon@gmail.com

Received November 18, 2009
Accepted November 19, 2010

