IF-dimension of Modules

Najib Mahdou and Mohammed Tamekkante

Abstract. In this paper, we introduce a dimension, called IF-dimension, for modules. With this new dimension we give a new characterization of IFD ring dimension of rings; see [4]. The relations between the IF dimension and other dimensions are discussed.

1. Introduction

Throughout this paper, R denotes a non-trivial associative ring and all modules — if not specified otherwise — are left and unitary.

Let R be a ring, and let M be an R-module. As usual we use $\text{pd}_R(M)$, $\text{id}_R(M)$ and $\text{fd}_R(M)$ to denote, respectively, the classical projective dimension, injective dimension and flat dimension of M. We use also $\text{gldim}(R)$ and $\text{wdim}(R)$ to denote, respectively, the classical global and weak dimension of R.

In [4], the authors introduced a new global dimension over a ring R, $r.IFD(R)$, defined as

$$r.IFD(R) = \sup\{\text{fd}_R(I) \mid I \text{ is a right injective } R\text{-module}\}.$$

For such dimension, Ding and Chen gave a various characterizations (see [4]).

For an R-module M, let $\text{IF-d}_R(M)$ denote the smallest integer $n \geq 0$ such that $\text{Tor}^i_R(I, M) = 0$ for all $i > n$ and all right injective R-module I and call $\text{IF-d}_R(M)$ the IF-dimension of M. If no such n exists, set $\text{IF-d}_R(M) = \infty$. If $\text{IF-d}_R(M) = 0$, then M will be called IF-module.

In this paper, we investigate the IF-dimension and we give the following new characterization $\text{IFD}(R) = \sup\{\text{IF-d}(R/I) \mid I \text{ is a left ideal of } R\}$.

Recall that a subclass \mathcal{X} of R-modules is called projectively resolving if \mathcal{X} contain all projective modules, and for every short exact sequence $0 \rightarrow X' \rightarrow X \rightarrow X'' \rightarrow 0$ with $X'' \in \mathcal{X}$ the conditions $X' \in \mathcal{X}$ and $X \in \mathcal{X}$ are equivalent (see [9, Definition 1.1]). Also an R-module is called FP-injective if, for all finitely presented N, $\text{Ext}^1_R(N, M) = 0$. The FP-injective dimension of M, denoted by $\text{FP-id}_R(M)$,
is defined to be the least positive integer \(n \) such that \(\text{Ext}_R^{n+1}(N, M) = 0 \) for all finitely presented \(R \)-module \(N \). If no such \(n \) exists, set FP-id\(_R\)(\(M \)) = \(\infty \) (see [4]). The character module \(\text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z}) \) is denoted by \(M^+ \) and \(E(M) \) denote the envelope injective of the \(R \)-module \(M \).

Recall that a short exact sequence of right \(R \)-modules

\[
0 \to A \to B \to C \to 0
\]

is pure exact in the sense of Cohn ([2]) if for all (or equivalently for all finitely presented) left \(R \)-module \(K \) we have the exactness of

\[
0 \to A \otimes_R K \to B \otimes_R B \to C \otimes_R K \to 0.
\]

In this case we say also that \(A \) is a pure submodule of \(B \). For instance, a right \(R \)-module is FP-injective if, and only if, it is absolutely pure (i.e.; it is a pure submodule of every module containing it as a submodule); see [5, 8].

Lemma 1.1 ([3, Theorem 3.1]). For any ring \(R \), a sequence of right \(R \)-modules

\[
0 \to A \to B \to C \to 0
\]

is pure exact if, and only if, the sequence of character modules

\[
0 \to C^+ \to B^+ \to A^+ \to 0
\]

is split exact.

2. **Main results**

We start with the following proposition:

Proposition 2.1. The class of all IF module is projectively resolving, closed under arbitrary direct sums, and under direct summands.

Proof. Clearly, every flat (and then every projective) module is IF-module. Now, let \(0 \to M \to M' \to M'' \to 0 \) be an exact sequence of \(R \)-modules. If \(M'' \) is an IF-module. It is trivial that \(M' \) is IF-module if, and only if, \(M \) is IF-module by using the functor \(\text{Tor}_i^R(E, -) \) with \(E \) right injective and the long suite exact sequence of homology. Since \(\text{Tor}_i^R(E, -) \) commutes with direct sums the other assertions follows immediately. \(\square \)

We have the following characterization of IF-dimension:

Proposition 2.2. For any \(R \)-module \(M \) and any positive integer \(n \), the following are equivalent:

1. FP-d\(_R\)(\(M \)) \(\leq n \).
2. \(\text{Tor}_i^R(E, M) = 0 \) for all \(i > n \) and all right injective \(R \)-module \(E \).
3. \(\text{Tor}_i^R(E, M) = 0 \) for all \(i > n \) and all right FP-injective \(R \)-module \(E \).
4. \(\text{Tor}_i^R(E, M) = 0 \) for all \(i > n \) and all right \(R \)-module \(E \) with finite FP-injective dimension.
5. \(\text{Tor}_i^R(F^+, M) = 0 \) for all \(i > n \) and all \(R \)-module \(F \) with finite flat dimension.
(6) If \(0 \to F_n \to F_{n-1} \to \ldots \to F_0 \to M \to 0 \) is exact with \(F_0, \ldots, F_{n-1} \) are IF-modules, then \(F_n \) is also an IF-module.

Proof. The proof of (1) \(\iff \) (2) \(\iff \) (6) is standard homological algebra fare.

(2) \(\Rightarrow \) (3). Consider an arbitrary right FP-injective \(R \)-module \(K \). From [3, Theorem 3.1], the short pure exact sequence of right \(R \)-modules \(0 \to K \to E(K) \to E(K)/K \to 0 \) where \(E(K) \) is the injective envelope of \(K \) induce the split exact sequence \(0 \to (E(K)/K)^+ \to E(K)^+ \to K^+ \to 0 \). Thus, \(K^+ \) is a direct summand of \(E(K)^+ \). On the other hand, by adjointness, \(\text{Ext}^i_K(M,E(K)^+) \cong (\text{Tor}_i^K(E(K),M))^+ = 0 \). Thus, \((\text{Tor}_i^K(K,M))^+ = \text{Ext}^i_K(M,K^+) = 0 \), and so \(\text{Tor}_i^K(K,M) \) vanishes as desired.

(3) \(\Rightarrow \) (4). The proof will be by induction on \(m = \text{FP-id}_R(K) \). The induction start is clear, from (3). If \(m > 0 \), pick a short exact sequence \(0 \to K \to E(K) \to E(K)/K \to 0 \) where \(E(K) \) is the envelope injective of \(K \). Then, by a standard homological algebra we can see that \(\text{FP-id}_R(E(K)/K) = m - 1 \). So, we have, for all \(i > n \), the exact sequence

\[
\text{Tor}_i^{i+1}(E(K)/K,M) \to \text{Tor}_i^K(K,M) \to \text{Tor}_i^K(E(K),M).
\]

Clearly, \(\text{Tor}_i^{i+1}(E(K)/K,M) \) and \(\text{Tor}_i^K(E(K),M) \) vanishes by the induction hypothesis conditions and since \(E(K) \) is injective (and so FP-injective), respectively. Thus, \(\text{Tor}_i^K(K,M) = 0 \), as desired.

(4) \(\Rightarrow \) (2). Obvious since every injective module is FP-injective.

(4) \(\Rightarrow \) (5). Set \(m = \text{fd}_K(F) < \infty \). Then, by [6, Theorem 2.1], \(m = \text{id}_K(F^+) = \text{FP-id}_R(F^+) \). Thus, by hypothesis, \(\text{Tor}_i^K(F^+,M) = 0 \) for all \(i > n \).

(5) \(\Rightarrow \) (2). Let \(I \) be a right injective \(R \)-module. There exist a flat \(R \)-module \(F \) such that \(F \to I^+ \to 0 \) is exact. Then, \(0 \to I^+ \to F^+ \) is exact. But \(0 \to I \to I^+ \) is exact (by [7, Proposition 3.52]). Then, \(0 \to I \to F^+ \) is exact and then \(I \) is a direct summand of \(F^+ \). So, \(\text{Tor}_i^K(I,M) = 0 \) as a direct summand of \(\text{Tor}_i^K(F^+,M) \).

Clearly every flat module is IF-module but the inverse implication is not true in the general case as shown by the following example.

Example 2.3. Consider the local quasi-Frobenius ring \(R = k[X]/(X^2) \) where \(k \) is a field, and denote by \(\overline{X} \) the the residue class in \(R \) of \(X \). Then, \(\overline{X} \) is an IF \(R \)-module but not flat.

Proof. Since \(R \) is quasi-Frobenius, every right injective module \(E \) is projective (and so flat). Then, \(\text{Tor}_i^K(E,\overline{X}) = 0 \) for all \(i > 0 \). Thus, \(\overline{X} \) is an IF \(R \)-module. Now, if we suppose that \(\overline{X} \) is flat. Then, it is projective since it is finitely presented. But \(R \) is also local. So, \(\overline{X} \) must be a free which is absurd by the fact that \(\overline{X}^2 = 0 \). So, we conclude that \(\overline{X} \) is not flat, as desired.
Proposition 2.4. Let \(R \) be any ring and \(n \) a positive integer. The following are equivalents:

(1) \(r.\text{IFD}(R) \leq n \).
(2) \(\text{IF-d}_R(M) \leq n \) for every \(R \)-module \(M \).
(3) \(\text{IF-d}_R(M) \leq n \) for every finitely generated \(R \)-module \(M \).
(4) \(\text{IF-d}_R(R/I) \leq n \) for every ideal \(I \).

Proof. (1)\(\Rightarrow\)(2). Let \(M \) be an arbitrary \(R \)-module and \(E \) an injective right \(R \)-module. Since \(r.\text{IFD}(R) \leq n \), \(\text{fd}_R(E) \leq n \). Then, \(\text{Tor}^i_R(E,M) = 0 \) for all \(i > n \). Thus, \(\text{IF-d}_R(M) \leq n \), as desired.

(2)\(\Rightarrow\)(3)\(\Rightarrow\)(4). Obvious.

(4)\(\Rightarrow\)(1). Let \(E \) be a right injective \(R \)-module. Since \(\text{IF-d}_R(R/I) \leq n \) for every ideal \(I \), we have \(\text{Tor}_i^R(E,R/I) = 0 \) for all \(i > n \). Thus, from [11, Lemma 9.18], \(\text{fd}_R(E) \leq n \).

Corollary 2.5 (Theorem 3.5, [4]). For any ring \(R \) and any positive integer \(n \), the following are equivalent:

(1) \(\text{IFD}(R) \leq n \).
(2) \(\text{fd}_R(E) \leq n \) for every FP-injective right module \(E \).
(3) \(\text{fd}_R(E) \) for every right \(R \)-module with finite FP-injective dimension.
(4) \(\text{fd}_R(F^+) \leq n \) for every \(R \)-module with finite flat dimension.

Proof. Follows immediately from Propositions 2.2 and 2.4.

For a left coherent ring and a finitely presented modules we get:

Proposition 2.6. Let \(R \) be a left coherent ring and \(M \) a finitely presented \(R \)-module. Then, the following are equivalent for any positive integer \(n \).

(1) \(r.\text{IF-d}_R(M) \leq n \)
(2) \(\text{Ext}^i_R(M,R) = 0 \) for all \(i > n \).
(3) \(\text{Tor}^i_R(Q,M) = 0 \) for all \(i > n \) where \(Q \) is any injective cogenerator in the class of the right \(R \)-module.
(4) \(\text{Tor}^i_R(E(S),M) = 0 \) for all \(i > n \) and for all right simple module \(S \).

Proof. (1)\(\Rightarrow\)(3). Trivial.

(3)\(\Rightarrow\)(1). Let \(I \) be a right injective \(R \)-module. Since \(Q \) is an injective cogenerator in the class of the right \(R \)-module, \(I \) can be embedded in some product of \(Q \)’s. Thus, \(I \) is a direct summand of \(\prod Q \). Using [10, Lemma 1], \(\text{Tor}^i_R\left(\prod Q, M\right) = \prod \text{Tor}^i_R(Q,M) = 0 \) for all \(i > n \). Thus, \(\text{Tor}^i_R(I,M) = 0 \) for all \(i > n \), as desired.

(1)\(\Rightarrow\)(2). Since \(R \) is left coherent, \((\text{Ext}^i_R(M,R))^+ = \text{Tor}^i_R(R^+,M) = 0 \) for all \(i > 0 \). Thus, \(\text{Ext}^i_R(M,R) = 0 \).
For any $\text{IF-dimension of Modules}$

(2)\Rightarrow(1). Follows from the implication (3)\Rightarrow(1) since R^+ is an injective cogenerator in the class of right R-module and since $(\text{Ext}^1_R(M, R))^+ = \text{Tor}^1_R(R^+, M)$ (recall that R is left coherent).

(1)\Rightarrow(4). Trivial.

(4)\Rightarrow(1). Using [1, Proposition 18.15], $Q = \prod E(S)$ (direct product of the envelope injective of simple right modules) is an injective cogenerator in the class of right R-modules. On the other hand, from [10, Lemma 1], $\text{Tor}_d^1\left(\prod E(S), M\right) = \prod \text{Tor}_d^1(E(S), M)$ = 0. Thus, this implication follows from (3)\Rightarrow(1).

\textbf{Proposition 2.7.} For any R-module M, we have $\text{IF-d}_R(M) \leq \text{fd}_R(M)$ with equality if $\text{fd}_R(M)$ is finite.

\textbf{Proof.} The first inequality follows from the fact that every flat module is an IF-module. Now, set $\text{fd}_R(M) = n < \infty$ and suppose that $\text{IF-d}_R(M) = m < n$. Thus, there is a right R-module N such that $\text{Tor}_m^R(N, M) \neq 0$. Clearly, N cannot be injective. Thus, we can consider the exact sequence $0 \to N \to E(N) \to E(N)/N \to 0$ where $E(N)$ is the envelope injective of N. Then, we have

$0 = \text{Tor}_m^R(E(N), M) \to \text{Tor}_{m+1}^R(E(N)/N, M) \to \text{Tor}_m^R(N, M) \to \text{Tor}_m^n(E(N), M) = 0$

Therefore, $\text{Tor}_m^R(E(N)/N, M) \neq 0$. Absurd, since $\text{fd}_R(M) = n$.

The proof of the next proposition is standard homological algebra.

\textbf{Proposition 2.8.} Let $0 \to A \to B \to C \to 0$ an exact sequence of R-modules. If two of $\text{IF-d}_R(A)$, $\text{IF-d}_R(B)$, and $\text{IF-d}_R(C)$ are finite, so is the third. Moreover,

(1) $\text{IF-d}_R(B) \leq \sup\{\text{IF-d}_R(A), \text{IF-d}_R(C)\}$.

(2) $\text{IF-d}_R(A) \leq \sup\{\text{IF-d}_R(B), \text{IF-d}_R(C) - 1\}$.

(3) $\text{IF-d}_R(C) \leq \sup\{\text{IF-d}_R(B), \text{IF-d}_R(A) + 1\}$.

The next corollary is an immediate consequence of Proposition 2.8.

\textbf{Corollary 2.9.} Let R be a ring, $0 \to A \to B \to C \to 0$ an exact sequence of R-modules. If B is an IF-module and $\text{IF-d}(C) > 0$ then, $\text{IF-d}(C) = \text{IF-d}(A) + 1$.

\textbf{Proposition 2.10} (Flat base change). Consider a flat homomorphism of commutative rings $R \to S$ (that is, S is flat as an R-module). Then for any R-module M we have the inequality, $\text{IF-d}_S(M \otimes_R S) \leq \text{IF-d}_R(M)$.

\textbf{Proof.} Suppose that $\text{IF-d}_R(M) \leq n$. If I is an injective S-module, then since S is R-flat, I is also an injective R-module. On the other hand, from [11, Theorem 11.64], we have $\text{Tor}_i^S(I, M \otimes_R S) \cong \text{Tor}_i^R(I, M) = 0$ for all $i > n$. Thus, $\text{IF-d}_S(M \otimes_R S) \leq n$, as desired.
References

Najib Mahdou, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.
E-mail: mahdou@hotmail.com

Mohammed Tamekkante, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco.
E-mail: tamekkante@yahoo.fr

Received January 15, 2010
Accepted May 27, 2010