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On The Hadwiger’s Conjecture

Ikorong Anouk Gilbert Nemron

Abstract. The Hadwiger’s conjecture (see [1] or [2] or [3] or [4] or [5] is well
known. In this paper, we show an original Theorem which is equivalent to the
Hadwiger’s conjecture.

1. Introduction and prologue

This paper is an original investigation around the Hadwiger conjecture. We recall
that in a graph G = [V (G), E(G),χ(G),ω(G)], V (G) is the set of vertices, E(G) is
the set of edges, χ(G) is the chromatic number, and ω(G) is the clique number of
G. The Hadwiger conjecture states that every graph G is η(G) colorable (i.e. we
can color all vertices of G with η(G) colors such that two adjacent vertices do not
receive the same color). η(G) is the hadwiger number of G and is the maximum
of p such that G is contractible to the complete graph Kp). That being so, this
paper is divided into four simple Sections. In Section 2 (Standard definitions), we
present briefly some standard definitions known in Graph Theory. In Section 3,
we introduce definitions that are not standard, and some elementary properties.
In Section 4, we introduce a new graph parameter denoted by τ (τ is called
the hadwiger index) and we present elementary properties of this parameter. In
Section 5, using the graph parameter τ, we show a simple Theorem which is
equivalent to the Hadwiger conjecture. This simple Theorem immediately implies
that the Hadwiger conjecture is true if and only if τ(G) = ω(G), for every graph G
which is completeω(G)-partite (τ is the graph parameter defined in Section 4). Here,
all results are completely different from all the investigations that have been done
around the Hadwiger conjecture in the past. In this paper, every graph is finite, is
simple and undirected.
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2. Standard definitions

We start by standard definitions (see [2] or [3] for instance). Recall that in a
graph G = [V (G), E(G)], V (G) is the set of vertices and E(G) is the set of edges.
A graph F is a subgraph of G, if V (F)⊆ V (G) and E(F)⊆ E(G). We say that a graph
F is an induced subgraph of G by Z , if F is a subgraph of G such that V (F) = Z ,
Z ⊆ V (G), and two vertices of F are adjacent in F , if and only if they are adjacent
in G. For X ⊆ V (G), G \ X denotes the subgraph of G induced by V (G) \ X . A clique
of G is a subgraph of G that is complete; such a subgraph is necessarily an induced
subgraph (recall that a graph K is complete if every pair of vertices of K is an edge
of K);ω(G) is the size of a largest clique of G, andω(G) is called the clique number
of G. A stable set of a graph G is a set of vertices of G that induces a subgraph with
no edges; α(G) is the size of a largest stable set, and α(G) is called the stability
number of G. The chromatic number of G (denoted by χ(G)) is the smallest number
of colors needed to color all vertices of G such that two adjacent vertices do not
receive the same color. It is easy to see:

Assertion 2.1. Let G be a graph. Then ω(G)≤ χ(G).
The hadwiger number of a graph G (denoted by η(G)), is the maximum of p

such that G is contractible to the complete graph Kp. (Recall that, if e is an edge of
G incident to x and y , we can obtain a new graph from G by removing the edge e
and identifying x and y so that the resulting vertex is incident to all those edges
(other than e) originally incident to x or to y . This is called contracting the edge
e. If a graph F can be obtained from G by a succession of such edge-contractions,
then, G is contractible to F . The maximum of p such that G is contractible to the
complete graph Kp is the hadwiger number of G, and is denoted by η(G)). The
Hadwiger conjecture states that χ(G)≤ η(G), for every graph G. Clearly we have:

Assertion 2.2. Let G and let F be a subgraph of G. Then η(F)≤ η(G).

3. Non-standard definitions and some elementary properties

In this section, we introduce definitions that are not standard. These definitions
are determining for our final Theorem. We say that a graph G is a true pal of a
graph F , if F is a subgraph of G and χ(F) = χ(G); trpl(F) denotes the set of all
true pals of F (so, G ∈ trpl(F) means G is a true pal of F).

Recall that a set X is a stable subset of a graph G, if X ⊆ V (G) and if the subgraph
of G induced by X has no edges. A graph G is a complete ω(G)-partite graph (or
a complete multipartite graph), if there exists a partition Ξ(G) = {Y1, . . . , Yω(G)] of
V (G) into ω(G) stable sets such that x ∈ Yj ∈ Ξ(G), y ∈ Yk ∈ Ξ(G) and j 6= k,⇒ x
and y are adjacent in G. It is immediate that χ(G) =ω(G), for every completeω(G)-
partite graph. Ω denotes the set of graphs G which are complete ω(G)-partite. So,
G ∈ Ω means G is a complete ω(G)-partite graph (For example, if H is a complete
ω(H)-partite graph with ω(H) = 1, then H ∈ Ω; if H is a complete ω(H)-partite
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graph with ω(H) = 2, then H ∈ Ω; if H is a complete ω(H)-partite graph with
ω(H) = 3, then H ∈ Ω; . . . etc). Using the definition of Ω, then the following
Assertion becomes immediate.

Assertion 3.1. Let H ∈ Ω and let F be a graph. Then we have the following two
properties.

(3.1.1) χ(H) =ω(H).
(3.1.2) There exists a graph P ∈ Ω such that P is a true pal of F.

Proof. Property (3.1.1) is immediate (use the definition of Ω and note H ∈ Ω).
Property (3.1.2) is also immediate (indeed, let F be graph and let Ξ(F) =
{Y1, . . . , Yχ(F)] be a partition of V (F) into χ(F) stable sets (it is immediate that such
a partition Ξ(F) exists). Now let Q be a graph defined as follows: (i) V (Q) = V (F),
(ii) Ξ(Q) = {Y1, . . . , Yχ(F)] is a partition of V (Q) into χ(F) stable sets such that
x ∈ Yj ∈ Ξ(Q), y ∈ Yk ∈ Ξ(Q) and j 6= k, ⇒ x and y are adjacent in Q. Clearly
Q ∈ Ω, χ(Q) =ω(Q) = χ(F), and F is visibly a subgraph of Q; in particular Q is a
true pal of F such that Q ∈ Ω (because F is a subgraph of Q and χ(Q) = χ(F) and
Q ∈ Ω). Now put Q = P; property (3.1.2) follows.) ¤

So, we say that a graph P is a parent of a graph F , if P ∈ Ω
⋂

trpl(F). In other
words, P is a parent of F , if P is a complete ω(P)-partite graph and P is also a
true pal of F (observe that such a P exists, via property (3.1.2) of Assertion 3.1).
parent(F) denotes the set of all parents of a graph F (so, P ∈ parent(F) means P
is a parent of F). Using the definition of a parent, then the following Assertion is
immediate.

Assertion 3.2. Let F be a graph and let P ∈ parent(F). We have the following two
properties.

(3.2.1) Suppose that F ∈ Ω. Then χ(F) =ω(F) =ω(P) = χ(P).
(3.2.2) Suppose that F 6∈ Ω. Then χ(F) =ω(P) = χ(P).

4. The hadwiger index of a graph

Here, we define the hadwiger index of a graph and a son of a graph, and we
also give some elementary properties related to the hadwiger index. We recall (see
Section 2) that η(G) is the hadwiger number of G. Using the definition of a true pal
(see Section 3), then the following assertion is immediate.

Assertion 4.1. Let G be a graph. Then, there exists a graph S such that G is a true
pal of S and η(S) is minimum for this property.

Now we define the hadwiger index and a son. Let G be a graph and putA (G) =
[H; G ∈ trpl(H)]; clearly A (G) is the set of all graphs H, such that G is a true pal
of H. The hadwiger index of G is denoted by τ(G), where τ(G) = min

F∈A (G)
η(F). In

other words, τ(G) = η(F ′′), where F ′′ ∈ A (G), and η(F ′′) is minimum for this
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property. We say that a graph S is a son of G, if G ∈ trpl(S) and η(S) = τ(G). In
other words, a graph S is a son of G, if S ∈A (G) and η(S) = τ(G). In other terms
again, a graph S is a son of G, if G is a true pal of S and η(S) is minimum for this
property. Observe that such a son exists, via Assertion 4.1. It is immediate that, if S
is a son of a graph G, then χ(S) = χ(G) and η(S)≤ η(G).
Proposition 4.2. Let G ∈ Ω. We have the following three properties.

(4.2.1) If ω(G)≤ 1, then η(G) =ω(G) = τ(G) = χ(G).
(4.2.2) If G is a complete graph, then η(G) =ω(G) = τ(G) = χ(G).
(4.2.3) ω(G)≥ τ(G).
Proof. Properties (4.2.1) and (4.2.2) are immediate. Now we show property
(4.2.3). Indeed, recall G ∈ Ω, and clearly χ(G) =ω(G). Now, putA (G) = [H; G ∈
trpl(H)] and let K be a complete graph such that ω(K) =ω(G) and V (K)⊆ V (G);
clearly K is a subgraph of G and

χ(G) =ω(G) = χ(K) =ω(K) = η(K) = τ(K) . (4.1)

In particular K is a subgraph of G with χ(G) = χ(K), and therefore, G is a true pal
of K . So K ∈A (G) and clearly

τ(G)≤ η(K) . (4.2)

Note ω(G) = η(K) (use (4.1)), and inequality (4.2) immediately becomes τ(G)≤
ω(G). ¤

Proposition 4.3. Let F be a graph and let G ∈ trpl(F). Then τ(G)≤ τ(F).
Proof. Put A (G) = [H; G ∈ trpl(H)], and let S be a son of F , recalling that
G ∈ trpl(F), clearly G ∈ trpl(S); so S ∈ A (G) and clearly τ(G) ≤ η(S). Now,
observe η(S) = τ(F) (because S is a son of F), and the previous inequality
immediately becomes τ(G)≤ τ(F). ¤

Proposition 4.3 clearly says that the hadwiger index τ decreases (In the
following sense: G is a true pal of F ⇒ τ(G)≤ τ(F)).
Corollary 4.4. Let F be a graph and let P ∈ parent(F). Then τ(P)≤ τ(F).
Proof. Observe that P ∈ trpl(F) and apply Proposition 4.3. ¤

We will see in Section 5 that the hadwiger index helps to obtain a simple
Theorem which is equivalent to the Hadwiger conjecture.

5. A simple Theorem which is equivalent to the Hadwiger conjecture

In this section, we prove a simple Theorem which is equivalent to the
Hadwiger conjecture. This simple Theorem immediately implies that the Hadwiger
conjecture is true if and only if τ(G) =ω(G), for every graph G which is complete
ω(G)-partite. We recall (see Introduction or see Section 2) that the Hadwiger
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conjecture states that χ(G) ≤ η(G), for every graph G. Using the hadwiger index τ
(see Section 4), then the following simple Theorem is equivalent to the Hadwiger
conjecture.

Theorem 5.1. The following are equivalent.

(1) The Hadwiger conjecture holds (i.e. χ(H)≤ η(H), for every graph H).
(2) χ(F)≤ τ(F), for every graph F.
(3) ω(G) = τ(G), for every G ∈ Ω.

Proof. (2)⇒(3). Let G ∈ Ω, clearly G is a graph and so χ(G) ≤ τ(G). Note
χ(G) = ω(G) (since G ∈ Ω), and the previous inequality becomes ω(G) ≤ τ(G);
now, using property (4.2.3) of Proposition 4.2, we have ω(G)≥ τ(G), and the last
two inequalities imply that ω(G) = τ(G).

(3)⇒(1). Let H be a graph and let P ∈ parent(H), then τ(P)≤ τ(H) (use Corollary
4.4); observe P ∈ Ω (since P ∈ parent(H)), clearly ω(P) = τ(P) (since P ∈ Ω),
and χ(H) = χ(P) = ω(P) (since P ∈ parent(H)). Clearly τ(P) = χ(H) and the
previous inequality becomes χ(H) ≤ τ(H). Recall τ(H) ≤ η(H), and the last two
inequalities become χ(H)≤ τ(H)≤ η(H). So χ(H)≤ η(H), and clearly (3)⇒ (1).
(1)⇒(2). Indeed, let F be a graph and let S be a son of F , clearly χ(S) ≤ η(S);
now observing that χ(S) = χ(F) (since F ∈ trpl(S)) and η(S) = τ(F) (because S
is a son of F), then the previous inequality immediately becomes χ(F)≤ τ(F). So
(1)⇒ (2) and Theorem 5.1 follows. ¤

From Theorem 5.1, the following Theorem immediately comes:

Theorem 5.2. The following are equivalent.

(i) The Hadwiger conjecture holds.
(ii) ω(G) = τ(G), for every G ∈ Ω.

Proof. Indeed, it is an immediate consequence of Theorem 5.1. ¤

Visibly, Theorem 5.2 clearly says the Hadwiger conjecture is true if and only if
τ(G) =ω(G), for every graph G which is complete ω(G)-partite.
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