Research Article

Regularity of Linear Hypersubstitutions for Algebraic Systems of Type ((n),(m))

Thodsaporn Kumduang ${ }^{1}$ and Sorasak Leeratanavalee ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
${ }^{2}$ Center of Excellence in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
*Corresponding author: sorasak.1@cmu.ac.th

Abstract

An algebraic system consisting a nonempty set together with a sequence of operations and a sequence of relations on this set. The properties of this structure are expressed by terms and formulas. In this paper we study on linear terms of type (n) for a natural number $n \geq 1$ and linear formulas of type $((n),(m))$ for natural numbers $n, m \geq 1$. Using the partial clone of linear terms and the partial clone of linear formulas, we define the new concept of linear hypersubstitutions for algebraic systems of type $((n),(m))$ and proved that the set of all linear hypersubstitutions for algebraic systems of type $((n),(m))$ with a binary operation on this set and the identity element forms a monoid. Finally, we also interest in studying the semigroup or monoid properties of its. In particular, we investigate the idempotency and regularity of linear hypersubstitutions for algebraic systems of this monoid.

Keywords. Algebraic systems; Linear terms; Linear formulas; Linear hypersubstitutions; Regular elements

MSC. 08A05; 08A55; 03C05
Received: September 25, 2018
Accepted: October 24, 2018
Copyright © 2019 Thodsaporn Kumduang and Sorasak Leeratanavalee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The algebraic system was first introduced by A.I. Malcev in 1951 [9]. We now recall informal definition of algebraic systems. An algebraic system is a structure consisting a nonempty set together with a sequence of operations and a sequence of relations on this set.

The concept of terms is one of the fundamental concepts of universal algebra. Terms may be considered as words formed by letters. To define terms one needs variables and operation symbols, let $\left(f_{i}\right)_{i \in I}$ be a sequence of operation symbols, when f_{i} is n_{i}-ary and $n_{i} \in \mathbb{N}^{+}:=\mathbb{N} \backslash\{0\}$. We denote by $X:=\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ is a countably infinite set of symbols called variables and for each $n \geq 1$ let $X_{n}:=\left\{x_{1}, \ldots, x_{n}\right\}$. The sequence $\tau:=\left(n_{i}\right)_{i \in I}$ is called a type. Then an n-ary term of type τ is defined inductively as follows:
(i) Every variable $x_{j} \in X_{n}$ is an n-ary term of type τ.
(ii) If $t_{1}, \ldots, t_{n_{i}}$ are n-ary terms of type τ and f_{i} is an n_{i}-ary operation symbol, then $f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ is an n-ary term of type τ.
Let $W_{\tau}\left(X_{n}\right)$ be the set of all n-ary terms of type τ which contains x_{1}, \ldots, x_{n} and is closed under finite application of (ii) and let $W_{\tau}(X):=\bigcup_{n \in \mathbb{N}^{+}} W_{\tau}\left(X_{n}\right)$ be the set of all terms of type τ.

The investigation of terms is a relatively new, actively developing field of universal algebra, computer science and several subjects. For the application of terms in algebras is to defined identities. We use identities to classify algebras into collections called varieties. Moreover, the knowledge of the identities valid in algebras could be useful for solving functional equations (see [7]). Not only the concept of terms which is used to express properties of algebraic systems but there is the other one which is called formulas, first introduced by A.I. Mal'cev in 1973 (see [9]).

To define quantifier free formulas we need terms, logical connectives and relation symbols. We now recall the definition of a formula which is defined by K. Denecke and D. Phusanga in 2013 [6]. Let J be an indexed set and A be a nonempty set. An n_{j}-ary relation on A is a relation $\gamma \subseteq A^{n_{j}}$ and call n_{j} the arity of γ. Let $\left(\gamma_{j}\right)_{j \in J}$ be a sequence of relation symbols and $\tau^{\prime}:=\left(n_{j}\right)_{j \in J}$ where γ_{j} has the arity n_{j} for every $j \in J$.

Definition $1([10])$. Let $n \in \mathbb{N}^{+}$and τ, τ^{\prime} be the types of operation symbols and relation symbols, respectively. An n-ary quantifier free formula of type (τ, τ^{\prime}) (for simply, formula) is defined in the following way:
(i) If t_{1}, t_{2} are n-ary terms of type τ, then the equation $t_{1} \approx t_{2}$ is an n-ary quantifier free formula of type (τ, τ^{\prime}).
(ii) If $j \in J$ and $t_{1}, \ldots, t_{n_{j}}$ are n-ary terms of type τ and γ_{j} is an n_{j}-ary relation symbol, then $\gamma_{j}\left(t_{1}, \ldots, t_{n_{j}}\right)$ is an n-ary quantifier free formula of type (τ, τ^{\prime}).
(iii) If F is an n-ary quantifier free formula of type (τ, τ^{\prime}), then $\neg F$ is an n-ary quantifier free formula of type (τ, τ^{\prime}).
(iv) If F_{1} and F_{2} are n-ary quantifier free formulas of type (τ, τ^{\prime}), then $F_{1} \vee F_{2}$ is an n-ary quantifier free formula of type (τ, τ^{\prime}).

Let $\mathscr{F}_{\left(\tau, \tau^{\prime}\right)}\left(X_{n}\right)$ be the set of all n-ary quantifier free formulas of type (τ, τ^{\prime}) and let $\mathscr{F}_{\left(\tau, \tau^{\prime}\right)}(X):=\bigcup_{n \in \mathbb{N}^{+}} \mathscr{F}_{\left(\tau, \tau^{\prime}\right)}\left(X_{n}\right)$ be the set of all quantifier free formulas of type (τ, τ^{\prime}).

Many mathematicians are interested in a term in which each variable occur at most once which is called a linear term (see also [2]). The concept of linear terms was introduced by M. Couceiro and E. Lehtonen [3] in 2012. It is important to do research on linear terms because it is connected with several other areas of algebras. For example, a linear term may be considered
on generalization of a linear expression over a vector space (see e.g. [4]).
As we already mentioned above why we are interesting in linear terms, we now recall a formal definition of linear terms of type τ as follows: let $\operatorname{var}(t)$ be the set of all variables occurring in the term t.

Definition 2 ([3]). An n-ary linear term of type τ is defined in the following inductive way:
(i) Every $x_{i} \in X_{n}$ is an n-ary linear term of type τ.
(ii) If $t_{1}, \ldots, t_{n_{i}}$ are n-ary linear terms of type τ with $\operatorname{var}\left(t_{l}\right) \cap \operatorname{var}\left(t_{k}\right)=\varnothing$ for all $1 \leq l<k \leq n_{i}$ and f_{i} is an n_{i}-ary operation symbol, then $f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ is an n-ary linear term of type τ.

Let $W_{\tau}^{l i n}\left(X_{n}\right)$ be the set of all n-ary linear terms of type τ and let $W_{\tau}^{l i n}(X):=\bigcup_{n \in \mathbb{N}^{+}} W_{\tau}^{l i n}\left(X_{n}\right)$ be the set of all linear terms of type τ.

To study clones, mathematicians have used many several different techniques such as combinatorics, set theory or topology. One of research directions in clone theory is the clone of terms which plays an important role in universal algebra and computer science. Clone can be given an algebraic structure, for example as many-sorted algebra of particular type. In 2016, K. Denecke [4] published the paper "The Partial Clone of Linear Terms", which investigate the concept about the clone of linear terms and their properties. In the recently year, the authors extended the concept of clone of terms in algebra to clone of linear terms of type (n) and study clone of linear formulas for algebraic systems (see [8]).

Not only the concept of clone is important in universal algebra, the classification of algebras by identities into collections called varieties are interesting. We can also use hyperidentities to classify varieties into collections called hypervarieties. In 1991, K. Denecke, D. Lau, R. Pöschel and D. Schweigert [5] introduced the concept of a hypersubstitution for algebras which used to define hyperidentities and hypervarieties mentioned above. A hypersubstitution is a map which takes every n-ary operation symbol to an n-ary term. Any such map can be uniquely extended to a map defined on the set of all terms, and then any two such hypersubstitutions can be composed in a natural way. They proved that the set of all hypersubstitutions forms a monoid.

A hypersubstitution for algebraic systems was first introduced by K. Denecke and D. Phusanga [10] in 2008. It is a mapping which maps operation symbols to terms and relation symbols to quantifier free formulas preserving arities. They defined a binary operation on the set of all hypersubstitutions for algebraic systems and then proved that this set with the binary operation and an identity element forms a monoid. Five years later, the definition of a hypersubstitution for algebraic systems was improved by D. Phusanga (see [10]).

In 2016 Th. Changphas, K. Denecke and B. Pibaljommee [2] restricted to study a hypersubstitution for algebras which maps any operation symbols to a linear term of the same arity, called a linear hypersubstitution for algebras. As a consequence, they proved that the set of all linear hypersubstitutions forms a monoid.

Next, we want to recall some basic concepts for the discussion of our main results.

2. Preliminaries

We present the concepts about the partial clone of linear terms and the partial clone of linear formulas and recall some properties of these structures (for more detail see [8]). For the basic knowledge of hypersubstitutions, the reader is refered to [7].

Definition 3 ([8]). Let $n, p \in \mathbb{N}^{+}$with $p \geq n$. A p-ary linear term of type (n) is defined in the following inductive way:
(i) Every $x_{i} \in X_{p}$ is a p-ary linear term of type (n).
(ii) If t_{1}, \ldots, t_{n} are p-ary linear terms of type (n) with $\operatorname{var}\left(t_{l}\right) \cap \operatorname{var}\left(t_{k}\right)=\varnothing$ for all $1 \leq l<k \leq n$ and f is an n-ary operation symbol, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a p-ary linear term of type (n).

Let $W_{(n)}^{l i n}\left(X_{p}\right)$ be the set of all p-ary linear terms of type (n) and let $W_{(n)}^{l i n}(X):=\bigcup_{p \in \mathbb{N}^{+}} W_{(n)}^{l i n}\left(X_{p}\right)$ be the set of all linear terms of type (n).

Now, we recall the concept of superposition of linear terms of type (n), this leads us to forms the many-sorted algebra which is called the clone of linear terms.

Definition 4 ([8]). Let $p, q \in \mathbb{N}^{+}$with $p \leq q, t \in W_{(n)}^{l i n}\left(X_{p}\right)$ and $s_{1}, \ldots, s_{p} \in W_{(n)}^{l i n}\left(X_{q}\right)$ with $\operatorname{var}\left(s_{l}\right) \cap \operatorname{var}\left(s_{k}\right)=\varnothing$ for all $1 \leq l<k \leq p$. Then we define a superposition operation of linear terms

$$
S^{\operatorname{lin} p}: W_{(n)}^{\operatorname{lin}}\left(X_{p}\right) \times\left(W_{(n)}^{\operatorname{lin}}\left(X_{q}\right)\right)^{p} \longrightarrow W_{(n)}^{l i n}\left(X_{q}\right)
$$

inductively by the following steps:
(i) If $t=x_{i}$ for $1 \leq i \leq p$, then $S^{\operatorname{lin}}{ }_{q}^{p}\left(x_{i}, s_{1}, \ldots, s_{p}\right):=s_{i}$.
(ii) If $t=f\left(t_{1}, \ldots, t_{p}\right)$, then

$$
S^{\operatorname{lin}{ }_{q}^{p}}\left(f\left(t_{1}, \ldots, t_{p}\right), s_{1}, \ldots, s_{p}\right):=f\left(S^{\operatorname{lin}}{ }_{q}^{p}\left(t_{1}, s_{1}, \ldots, s_{p}\right), \ldots, S^{\operatorname{lin}}{ }_{q}^{p}\left(t_{p}, s_{1}, \ldots, s_{p}\right)\right) .
$$

On the set $W_{(n)}^{l i n}\left(X_{p}\right)$ of all p-ary linear terms of type (n), we establish the many-sorted algebra of type ($p+1, \ldots, 0, \ldots, 0$), by using the ($p+1$)-ary superposition operation $S^{l i n}{ }_{q}^{p}$ as we already defined in Definition 4 and adding the variables x_{1}, \ldots, x_{p} as nullary operations, call projections. Then we obtain the many-sorted algebra

$$
\text { PLinClone }(n):=\left(\left(W_{(n)}^{\operatorname{lin}}\left(X_{p}\right)\right)_{p \in \mathbb{N}^{+}},\left(S^{\text {lin }}{ }_{q}^{p}\right)_{p \leq q, p, q \in \mathbb{N}^{+}},\left(x_{i}\right)_{i \leq p, i \in \mathbb{N}^{+}}\right),
$$

which is called the partial clone of linear terms of type (n).
Next, some properties of PLinClone(n) will be presented.
Theorem 1 ([8]). The many sorted algebra PLinClone(n) satisfies the following equations:

(LC2) $S^{\text {lin }}{ }_{q}^{p}\left(x_{i}, t_{1}, \ldots, t_{p}\right)=t_{i}$ for $1 \leq i \leq p$,
(LC3) $S^{\operatorname{lin}}{ }_{p}^{p}\left(t, x_{1}, \ldots, x_{p}\right)=t$,
where $p, q, r \in \mathbb{N}^{+}$with $r \leq p \leq q, t \in W_{(n)}^{\text {lin }}\left(X_{r}\right), t_{1}, \ldots, t_{r} \in W_{(n)}^{l i n}\left(X_{p}\right)$, $\operatorname{var}\left(t_{l}\right) \cap \operatorname{var}\left(t_{k}\right)=\varnothing$ for all $1 \leq l<k \leq r$ and $s_{1}, \ldots, s_{p} \in W_{(n)}^{\text {lin }}\left(X_{q}\right), \operatorname{var}\left(s_{l}\right) \cap \operatorname{var}\left(s_{k}\right)=\varnothing$ for all $1 \leq l<k \leq p$.

Using the definition of the partial clone of linear terms, we defined the new concepts of the partial clone of linear formulas.

Let $\operatorname{var}(F)$ be the set of all variables occurring in the formula F.
Definition 5 ([8]). Let $m, n, p \in \mathbb{N}^{+}$with $p \geq m$. A p-ary quantifier free linear formula of type $((n),(m))$ (for simply, linear formula) is defined as follows:
(i) If s, t are p-ary linear terms of type (n) and $\operatorname{var}(s) \cap \operatorname{var}(t)=\varnothing$, then the equation $s \approx t$ is a p-ary quantifier freelinear formula of type $((n),(m))$.
(ii) If t_{1}, \ldots, t_{m} are p-ary linear terms of type (n) with $\operatorname{var}\left(t_{l}\right) \cap \operatorname{var}\left(t_{k}\right)=\varnothing$ for all $1 \leq l<k \leq m$ and γ is an m-ary relation symbol, then $\gamma\left(t_{1}, \ldots, t_{m}\right)$ is a p-ary quantifier free linear formula of type $((n),(m))$.
(iii) If F is a p-ary quantifier free linear formula of type $((n),(m))$, then $\neg F$ is a p-ary quantifier free linear formula of type $((n),(m))$.
(iv) If F_{1} and F_{2} are p-ary quantifier free linear formulas of type $((n),(m))$ and $\operatorname{var}\left(F_{1}\right) \cap$ $\operatorname{var}\left(F_{2}\right)=\varnothing$, then $F_{1} \vee F_{2}$ is a p-ary quantifier free linear formula of type $((n),(m))$.

Let $\underset{((n),(m))}{\text { lin }}\left(W_{(n)}^{\text {lin }}\left(X_{p}\right)\right)$ be the set of all p-ary quantifier free linear formulas of type (n), (m)) and let $\underset{((n),(m))}{(l i n}\left(W_{(n)}^{l i n}(X)\right):=\bigcup_{p \in \mathbb{N}^{+}} \mathscr{F}_{((n),(m))}^{l i n}\left(W_{(n)}^{\text {lin }}\left(X_{p}\right)\right)$ be the set of all quantifier free linear formulas of type ($(n),(m)$).

Remark 1. The linear formulas defined by (i) and (ii) are called atomic linear formulas.
Example 1. Let $((n),(m))=((2),(2))$ be a type, i.e., we have one binary operation symbol f and one binary relation symbol γ and let $X_{2}=\left\{x_{1}, x_{2}\right\}$. Then the binary atomic linear formulas of type ((2),(2)) are $x_{1} \approx x_{2}, x_{2} \approx x_{1}, \gamma\left(x_{1}, x_{2}\right), \gamma\left(x_{2}, x_{1}\right)$. Moreover, we obtained all other linear formulas of type ((2),(2)) from binary atomic linear formulas of type ((2),(2)) by using the logical connections \neg and \vee.

Lemma 1 ([1]). Suppose F is a formula in $\mathscr{F}_{\left(\tau, \tau^{\prime}\right)}(X)$. Then the following pair of formula is equivalent: $\neg(\neg F) \equiv F$.

Moreover, we also extended the definition of superposition of linear terms to superposition of linear formulas as follows:

Definition 6 ([8]). Let $p, q \in \mathbb{N}^{+}$with $p \leq q, F \in \mathscr{F}_{((n),(m))}^{l i n}\left(W_{(n)}^{l i n}\left(X_{p}\right)\right)$ and $s_{1}, \ldots, s_{p} \in W_{(n)}^{l i n}\left(X_{q}\right)$ with $\operatorname{var}\left(s_{l}\right) \cap \operatorname{var}\left(s_{k}\right)=\varnothing$ for all $1 \leq l<k \leq p$. Then we define the superposition operation

$$
R^{\text {lin } p}: \mathscr{F}_{((n),(m))}^{\operatorname{lin}}\left(W_{(n)}^{l i n}\left(X_{p}\right)\right) \times\left(W_{(n)}^{l i n}\left(X_{q}\right)\right)^{p} \longrightarrow \rightarrow \mathscr{F}_{((n),(m))}^{\operatorname{lin}}\left(W_{(n)}^{l i n}\left(X_{q}\right)\right)
$$

by the following steps:
(i) If F has the form $s \approx t$, then

$$
R^{\operatorname{lin}{ }_{q}^{p}\left(s \approx t, s_{1}, \ldots, s_{p}\right):=S^{\operatorname{lin}}{ }_{q}^{p}\left(s, s_{1}, \ldots, s_{p}\right) \approx S^{\operatorname{lin}}{ }_{q}^{p}\left(t, s_{1}, \ldots, s_{p}\right) . ~ . ~}
$$

(ii) If F has the form $\gamma\left(t_{1}, \ldots, t_{p}\right)$, then

$$
R^{\operatorname{lin}{ }_{q}^{p}}\left(\gamma\left(t_{1}, \ldots, t_{p}\right), s_{1}, \ldots, s_{p}\right):=\gamma\left(S^{\operatorname{lin}}{ }_{q}^{p}\left(t_{1}, s_{1}, \ldots, s_{p}\right), \ldots, S^{\text {lin }}{ }_{q}^{p}\left(t_{p}, s_{1}, \ldots, s_{p}\right)\right) .
$$

(iii) If $F \in \underset{((n),(m))}{\mathscr{F}_{(n)}^{l i n}}\left(W_{\left(X_{p}\right)}^{\text {lin }}\left(X_{p}\right)\right.$ and assume that $R^{\text {lin }}{ }_{q}^{p}\left(F, s_{1}, \ldots, s_{p}\right)$ is already defined, then

$$
R^{\operatorname{lin}{ }_{q}^{p}\left(\neg F, s_{1}, \ldots, s_{p}\right):=\neg R^{\operatorname{lin}}{ }_{q}^{p}\left(F, s_{1}, \ldots, s_{p}\right)}
$$

(iv) If $F_{1}, F_{2} \in \underset{((n),(m))}{\mathscr{F}_{(n)}^{l i n}}\left(W_{(n)}^{l i n}\left(X_{p}\right)\right)$ and supposed that

$$
\begin{aligned}
& R^{\operatorname{lin} p}{ }_{q}^{p}\left(F_{l}, s_{1}, \ldots, s_{p}\right) \text { is already defined for all } l \in\{1,2\} \text {, then } \\
& R^{\text {lin }}{ }_{q}\left(F_{1} \vee F_{2}, s_{1}, \ldots, s_{p}\right):=R^{\text {lin }}{ }_{q}^{p}\left(F_{1}, s_{1}, \ldots, s_{p}\right) \vee R^{\text {lin }}{ }_{q}^{p}\left(F_{2}, s_{1}, \ldots, s_{p}\right) .
\end{aligned}
$$

Now, we may consider the many-sorted algebra:

$$
\begin{aligned}
\text { PLinFormClone }((n),(m)):= & \left(\left(W_{(n)}^{l i n}\left(X_{p}\right)\right)_{p \in \mathbb{N}^{+}},\left(\mathscr{F}_{(n),(m))}^{\operatorname{lin}}\left(W_{(n)}^{\operatorname{lin}}\left(X_{p}\right)\right)\right)_{p \in \mathbb{N}^{+}},\right. \\
& \left.\left.\left(S^{\text {lin }} \underset{q}{p}\right)_{p \leq q, p, q \in \mathbb{N}^{+}},\left(R^{\operatorname{lin} p}\right)_{p}^{p}\right)_{p \leq q, p, q \in \mathbb{N}^{+}},\left(x_{i}\right)_{i \leq p, i \in \mathbb{N}^{+}}\right),
\end{aligned}
$$

which is called the partial clone of linear formula of type $((n),(m))$.
Theorem 2. ([8]) The many sorted algebra PLin FormClone($(n),(m)$) satisfies the following properties:
(LFC1) $R^{\operatorname{lin} p}{ }_{q}\left(R^{\operatorname{lin} r}\left(F, t_{1}, \ldots, t_{r}\right), s_{1}, \ldots, s_{p}\right)=R^{\operatorname{lin} r}{ }_{q}\left(F, S^{\operatorname{lin}{ }_{q}^{p}}\left(t_{1}, s_{1}, \ldots, s_{p}\right), \ldots, S^{\operatorname{lin} p}{ }_{q}^{p}\left(t_{r}, s_{1}, \ldots, s_{p}\right)\right.$),
(LFC2) $R^{\text {lin }}{ }_{p}^{p}\left(F, x_{1}, \ldots, x_{p}\right)=F$,
where $p, q, r \in \mathbb{N}^{+}$with $r \leq p \leq q, F \in \underset{(n),(m))}{\mathscr{F}_{(n)}^{l i n}}\left(W_{(n)}^{l i n}\left(X_{r}\right)\right), t_{1}, \ldots, t_{r} \in W_{(n)}^{l i n}\left(X_{p}\right), \operatorname{var}\left(t_{l}\right) \cap \operatorname{var}\left(t_{k}\right)=$ \varnothing for all $1 \leq l<k \leq r$ and $s_{1}, \ldots, s_{p} \in W_{(n)}^{l i n}\left(X_{q}\right), \operatorname{var}\left(s_{l}\right) \cap \operatorname{var}\left(s_{k}\right)=\varnothing$ for all $1 \leq l<k \leq p$.

After this preliminaries, we will start our main results in the next section.

3. Monoid of Linear Hypersubstitutions for Algebraic Systems of Type ((n),(m))

The main propose of this section is to introduce the new algebraic structure and consider some semigroup properties. We will start with giving the concept of linear hypersubstitutions for algebraic systems of type ($(n),(m)$) for fixed natural numbers $n, m \geq 1$ and $n \geq m$ by using the elementary concepts as we recalled in the previous section.

Let us start with the definition of the based set of our new structure.
Definition 7. Let $n \in \mathbb{N}^{+}$. A linear hypersubstitution for algebraic systems of type $((n),(m))$ is a mapping $\sigma:\{f\} \cup\{\gamma\} \rightarrow W_{(n)}^{\text {lin }}\left(X_{n}\right) \cup \mathscr{F}_{((n),(m))}^{\text {lin }}\left(W_{(n)}^{\text {lin }}\left(X_{m}\right)\right)$ which maps an n-ary operation symbol f to an n-ary linear term of type (n) and maps an m-ary relation symbol γ to an m-ary quantifier free linear formula of type $((n),(m))$. We denote the set of all linear hypersubstitutions for algebraic systems of type $((n),(m))$ by Hyp ${ }^{l i n}((n),(m))$.

From now on, every element in $H y p^{\operatorname{lin}}((n),(m))$ is denoted by $\sigma_{t, F}$ which maps an n-ary operation symbol f and an m-ary relation symbol γ to a linear term t and a linear formula F, respectively. That is $\sigma_{t, F}(f)=t$ and $\sigma_{t, F}(\gamma)=F$.
Let S_{n} be the set of all permutations on $\{1, \ldots, n\}$.
To define a binary operation on $H y p^{l i n}((n),(m)$, we extend a linear hypersubstitution for algebraic systems σ to a mapping $\widehat{\sigma}$.

Definition 8. Let $\sigma_{t, F} \in H y p p^{l i n}((n),(m))$. Then we define a mapping

$$
\widehat{\sigma}_{t, F}: W_{(n)}^{l i n}\left(X_{n}\right) \cup \mathscr{F}_{(n),(m))}^{l i n}\left(W_{(n)}^{l i n}\left(X_{m}\right)\right) \rightarrow W_{(n)}^{l i n}\left(X_{n}\right) \cup \mathscr{F}_{((n),(m))}^{l i n}\left(W_{(n)}^{l i n}\left(X_{m}\right)\right)
$$

inductively defined as follows:
(i) $\widehat{\sigma}_{t, F}\left[x_{i}\right]:=x_{i}$ for every $i=1, \ldots, n$.
(ii) $\widehat{\sigma}_{t, F}\left[f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right]:=S^{\operatorname{lin} n} n_{n}\left(\sigma_{t, F}(f), \widehat{\sigma}_{t, F}\left[x_{\pi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\pi(n)}\right]\right)$ where $\pi \in S_{n}$.
(iii) $\widehat{\sigma}_{t, F}\left[x_{l} \approx x_{k}\right]:=\widehat{\sigma}_{t, F}\left[x_{l}\right] \approx \widehat{\sigma}_{t, F}\left[x_{l}\right]$ where $l, k \in\{1, \ldots, m\}$ and $l \neq k$.
(iv) $\widehat{\sigma}_{t, F}\left[\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right]:=R^{\operatorname{lin}}{ }_{m}^{m}\left(\sigma_{t, F}(\gamma), \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right)\right.$ where $\phi \in S_{m}$.
(v) $\widehat{\sigma}_{t, F}[\neg F]:=\neg \widehat{\sigma}_{t, F}[F]$ for $F \in \mathscr{F}_{((n),(m))}^{l i n}\left(W_{(n)}^{l i n}\left(X_{m}\right)\right)$.
(vi) $\widehat{\sigma}_{t, F}\left[F_{1} \vee F_{2}\right]:=\widehat{\sigma}_{t, F}\left[F_{1}\right] \vee \widehat{\sigma}_{t, F}\left[F_{2}\right]$.

Example 2. Let $((n),(m))=((3),(3))$ be a type, i.e., we have one ternary operation symbol and one ternary relation symbol, say f and γ, respectively. Let $\sigma:\{f\} \cup\{\gamma\} \rightarrow W_{(3)}^{l i n}\left(X_{3}\right) \cup \mathscr{F}_{((3),(3))}^{\operatorname{lin}}\left(W_{(3)}^{l i n}\left(X_{3}\right)\right)$ where $\sigma_{t, F}(f)=f\left(x_{2}, x_{1}, x_{3}\right)$ and $\sigma_{t, F}(\gamma)=x_{3} \approx x_{1}$. Then, we have

$$
\begin{aligned}
\widehat{\sigma}_{t, F}\left[f\left(x_{3}, x_{1}, x_{2}\right)\right] & =S^{\operatorname{lin}}{ }_{3}^{3}\left(\sigma_{t, F}(f), \widehat{\sigma}_{t, F}\left[x_{3}\right], \widehat{\sigma}_{t, F}\left[x_{1}\right], \widehat{\sigma}_{t, F}\left[x_{2}\right]\right) \\
& =S^{l i n}{ }_{3}^{3}\left(f\left(x_{2}, x_{1}, x_{3}\right), x_{3}, x_{1}, x_{2}\right) \\
& =f\left(x_{1}, x_{3}, x_{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{\sigma}_{t, F}\left[\gamma\left(x_{1}, x_{3}, x_{2}\right)\right] & =R^{\operatorname{lin}}{ }_{3}^{3}\left(\sigma_{t, F}(\gamma), \widehat{\sigma}_{t, F}\left[x_{1}\right], \widehat{\sigma}_{t, F}\left[x_{3}\right], \widehat{\sigma}_{t, F}\left[x_{2}\right]\right) \\
& =S^{\operatorname{lin}}{ }_{3}^{3}\left(x_{3} \approx x_{1}, x_{1}, x_{3}, x_{2}\right) \\
& =S^{\operatorname{lin}{ }_{3}^{3}\left(x_{3}, x_{1}, x_{3}, x_{2}\right) \approx S^{\text {lin }}{ }_{3}^{3}\left(x_{1}, x_{1}, x_{3}, x_{2}\right)} \\
& =x_{2} \approx x_{1} .
\end{aligned}
$$

Now, we define a binary operation \circ_{r} on $\operatorname{Hyp}^{\operatorname{lin}}((n),(m))$ as follows:
Definition 9. Let $t_{1}, t_{2} \in W_{(n)}^{l i n}\left(X_{n}\right), F_{1}, F_{2} \in \underset{((n),(m))}{\mathscr{F}_{(n)}^{l i n}}\left(W_{(n)}^{l i n}\left(X_{m}\right)\right), \sigma_{t_{1}, F_{1},}, \sigma_{t_{2}, F_{2}} \in H^{l i n}((n),(m))$ and \circ is the usual composition of mappings. Then we define a binary operation \circ_{r} on $H y p^{l i n}((n),(m))$ by

$$
\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}:=\widehat{\sigma}_{t_{1}, F_{1}} \circ \sigma_{t_{2}, F_{2}} .
$$

Next, we prove that a binary operation \circ_{r} satisfies the associative law. To get our result, we need some preparation as follows:

Lemma 2. Let $t \in W_{(n)}^{\text {lin }}\left(X_{n}\right), \beta \in \underset{((n),(m))}{\mathscr{F}_{(n)}^{l i n}}\left(W_{m}^{l i n}\left(X_{m}\right)\right), \pi \in S_{n}$ and $\phi \in S_{m}$. Then for each $\sigma_{t, F} \in \operatorname{Hyp}^{\text {lin }}((n),(m))$, we have
(i) $\widehat{\sigma}_{t, F}\left[S^{\text {lin } n} n_{n}^{n}\left(t, x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right]=S \operatorname{lin}_{n}^{n}\left(\widehat{\sigma}_{t, F}[t], \widehat{\sigma}_{t, F}\left[x_{\pi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\pi(n)}\right]\right)$.
(ii) $\widehat{\sigma}_{t, F}\left[R^{\text {lin }} \underset{m}{m}\left(\beta, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]=R^{\text {lin }} \underset{m}{m}\left(\widehat{\sigma}_{t, F}[\beta], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right)$.

Proof. (i) Let $t \in W_{(n)}^{l i n}\left(X_{n}\right)$. We give a proof by induction on the complexity of a linear term t. If $t=x_{i}$ for all $1 \leq i \leq n$, the proof is obvious. If $t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ where $\pi \in S_{n}$ and for every $l \in\{1, \ldots n\}$ we assume that $\widehat{\sigma}_{t, F}\left[S^{\text {lin }}{ }_{n}^{n}\left(x_{\pi(l)}, x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right]=$
$S^{\text {lin }}{ }_{n}^{n}\left(\widehat{\sigma}_{t, F}\left[x_{\pi(l)}\right], \widehat{\sigma}_{t, F}\left[x_{\pi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\pi(n)}\right]\right)$, then by Theorem 1 , we get

$$
\begin{aligned}
\widehat{\sigma}_{t, F} & {\left[S^{\text {lin }}{ }_{n}^{n}\left(f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right] } \\
= & S^{\text {lin }}{ }_{n}^{n}\left(\sigma_{t, F}(f), \widehat{\sigma}_{t, F}\left[S^{\text {lin }}{ }_{n}^{n}\left(x_{\pi(1)}, x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right], \ldots, \widehat{\sigma}_{t, F}\left[S^{\text {lin }}{ }_{n}^{n}\left(x_{\pi(n)}, x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right]\right) \\
= & S^{\text {lin }}{ }_{n}^{n}\left(\sigma_{t, F}(f), S^{\text {lin }}{ }_{n}^{n}\left(\widehat{\sigma}_{t, F}\left[x_{\pi(1)}\right], \widehat{\sigma}_{t, F}\left[x_{\pi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\pi(n)}\right]\right), \ldots,\right. \\
& S^{\text {lin }}{ }_{n}^{n}\left(\widehat{\sigma}_{t, F}\left[x_{\pi(n)}\right], \widehat{\sigma}_{t, F}\left[x_{\pi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\pi(n)}\right]\right) \\
= & \left.S^{\text {lin } n_{n}^{n}} S^{\text {lin }}{ }_{n}^{n}\left(\sigma_{t, F}(f), \widehat{\sigma}_{t, F}\left[x_{\pi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\pi(n)}\right]\right), \widehat{\sigma}_{t, F}\left[x_{\pi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\pi(n)}\right]\right) \\
= & S^{\text {lin }}{ }_{n}^{n}\left(\widehat{\sigma}_{t, F}\left[f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right], \widehat{\sigma}_{t, F}\left[x_{\pi(1)]}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\pi(n)}\right]\right) .
\end{aligned}
$$

(ii) Let $\beta \in \mathscr{F} \mathscr{F}_{((n),(m))}^{l i n}\left(W_{(n)}^{l i n}\left(X_{m}\right)\right)$. We give a proof by the following steps.

If β has the form $x_{l} \approx x_{k}$ where $l, k \in\{1, \ldots, m\}$ and $l \neq k$, then we have

$$
\begin{aligned}
\widehat{\sigma}_{t, F}\left[R^{\text {lin }} \underset{m}{m}\left(x_{l} \approx x_{k}, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right] & =S^{\operatorname{lin} \underset{m}{m}\left(\widehat{\sigma}_{t, F}\left[x_{l}\right], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots,, \widehat{\sigma}\left[x_{\phi(m)}\right]\right)} \\
& \approx S^{\operatorname{lin} \underset{m}{m}\left(\widehat{\sigma}_{t, F}\left[x_{k}\right], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right)} \\
& =R^{\operatorname{lin}{\underset{m}{m}}_{m}\left(\widehat{\sigma}_{t, F}\left[x_{l}\right] \approx \widehat{\sigma}_{t, F}\left[x_{k}\right], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right)} \\
& =R^{\text {lin }}{ }_{m}^{m}\left(\widehat{\sigma}_{t, F}\left[x_{l} \approx x_{k}\right], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right) .
\end{aligned}
$$

If β has the form $\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$ where $\phi \in S_{m}$, then by Theorem 2 we have

$$
\begin{aligned}
& \widehat{\sigma}\left[R^{\operatorname{lin} \underset{m}{m}}\left(\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right), x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right] \\
& =R^{\text {lin }}{ }_{m}^{m}\left(\sigma_{t, F}(\gamma), \widehat{\sigma}_{t, F}\left[S^{\operatorname{lin}}{ }_{m}^{m}\left(x_{\phi(1)}, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right], \ldots,\right. \\
& \left.=\widehat{\sigma}_{t, F}\left[S^{\operatorname{lin} m}{ }_{m}^{m}\left(x_{\phi(m)}, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]\right) \\
& =R^{l i n}{ }_{m}^{m}\left(\sigma_{t, F}(\gamma), S^{l i n}{ }_{m}^{m}\left(\widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right), \ldots,\right. \\
& \left.S^{l i n}{ }_{m}^{m}\left(\widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right)\right) \\
& =R^{\text {lin }} \underset{m}{m}\left(R^{\operatorname{lin} \underset{m}{m}}\left(\sigma_{t, F}(\gamma), \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right), \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right) \\
& =R^{\text {lin } m}{ }_{m}^{m}\left(\widehat{\sigma}_{t, F}\left[\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right) \text {. }
\end{aligned}
$$

If β has the form $\neg F$ and assume that

$$
\widehat{\sigma}_{t, F}\left[R^{\operatorname{lin} \underset{m}{m}}\left(F, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]=R^{\operatorname{lin} \underset{m}{m}}\left(\widehat{\sigma}_{t, F}[F], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right),
$$

then

$$
\begin{aligned}
& \widehat{\sigma}_{t, F}\left[R^{\text {lin } m} m\right. \\
& m \\
&\left.\left(\neg F, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]=\neg\left(\widehat{\sigma}_{t, F}\left[R^{\operatorname{lin} m}{ }_{m}\left(F, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]\right) \\
&=\neg\left(R^{\text {lin }}{ }_{m}^{m}\left(\widehat{\sigma}_{t, F}[F], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right)\right) \\
&=R^{\operatorname{lin}{\underset{m}{m}}_{m}\left(\widehat{\sigma}_{t, F}[\neg F], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right) .}
\end{aligned}
$$

If β has the form $F_{1} \vee F_{2}$ and assume that

$$
\widehat{\sigma}_{t, F}\left[R^{\text {lin }} \underset{m}{m}\left(F_{l}, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]=R^{\text {lin }} \underset{m}{m}\left(\widehat{\sigma}_{t, F}\left[F_{l}\right], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right) \text { for all } l=1,2,
$$

then, we consider

$$
\begin{aligned}
& \widehat{\sigma}_{t, F}\left[R^{\text {lin } \left.\underset{m}{m}\left(F_{1} \vee F_{2}, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]}\right. \\
& \quad=\widehat{\sigma}_{t, F}\left[R^{\text {lin }} \underset{m}{m}\left(F_{1}, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right] \vee \widehat{\sigma}_{t, F}\left[R^{\text {lin }}{ }_{m}^{m}\left(F_{2}, x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right] \\
& \quad=R^{\text {lin }} \underset{m}{m}\left(\widehat{\sigma}_{t, F}\left[F_{1} \vee F_{2}\right], \widehat{\sigma}_{t, F}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t, F}\left[x_{\phi(m)}\right]\right) .
\end{aligned}
$$

Now, we can say that the extension $\widehat{\sigma}_{t, F}$ of a linear hypersubstitution $\sigma_{t, F}$ of type (n),(m)) is an endomorphism. As a result of Lemma 2, we have the following lemma.

Lemma 3. Let $t_{1}, t_{2} \in W_{(n)}^{\text {lin }}\left(X_{n}\right)$ and $F_{1}, F_{2} \in \mathscr{F}_{((n),(m))}^{\text {lin }}\left(W_{(n)}^{\text {lin }}\left(X_{m}\right)\right)$. Then for any $\sigma_{t_{1}, F_{1},}, \sigma_{t_{2}, F_{2}} \in$ Hyp ${ }^{\text {lin }}((n),(m))$, we have

$$
\left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right)=\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}} .
$$

Proof. Let $t \in W_{(n)}^{\text {lin }}\left(X_{n}\right)$. We give a proof by induction on the complexity of a linear term t. If $t=x_{i} ; 1 \leq i \leq n$, then $\left(\sigma_{t_{1}, F_{1}} \circ \circ_{r} \sigma_{t_{2}, F_{2}}\right)\left[x_{i}\right]=x_{i}=\widehat{\sigma}_{t_{1}, F_{1}}\left[x_{i}\right]=\widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[x_{i}\right]\right]=\left(\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}}\right)\left[x_{i}\right]$. If $t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ where $\pi \in S_{n}$, then we have

$$
\begin{aligned}
& \left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right)\left[f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right] \\
& \quad=S^{l i n}{ }_{n}^{n}\left(\widehat{\sigma}_{t_{1}, F_{1}}\left[\sigma_{t_{2}, F_{2}}(f)\right], \widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[x_{\pi(1)}\right)\right], \ldots, \widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[x_{\pi(n)}\right]\right]\right) \\
& \quad=\widehat{\sigma}_{t_{1}, F_{1}}\left[S^{l i n}{ }_{n}\left(\sigma_{t_{2}, F_{2}}(f), \widehat{\sigma}_{t_{2}, F_{2}}\left[x_{\pi(1)}\right], \ldots, \widehat{\sigma}_{t_{2}, F_{2}}\left[x_{\pi(n)}\right]\right)\right] \\
& \quad=\left(\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}}\right)\left[f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right] .
\end{aligned}
$$

Let $\beta \in \mathscr{F}_{((n),(m))}^{\text {lin }}\left(W_{(n)}^{\text {lin }}\left(X_{m}\right)\right)$. We give a proof by the following steps.
If β has the form $x_{l} \approx x_{k}$ where $l, k \in\{1, \ldots, m\}$ and $l \neq k$, then

$$
\begin{aligned}
\left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right)\left[x_{l} \approx x_{k}\right] & =\widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[x_{l}\right]\right] \approx \widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[x_{k}\right]\right] \\
& =\widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[x_{l}\right] \approx \widehat{\sigma}_{t_{2}, F_{2}}\left[x_{k}\right]\right] \\
& =\left(\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}}\right)\left[x_{l} \approx x_{k}\right] .
\end{aligned}
$$

If β has the form $\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$ where $\phi \in S_{m}$, then by Theorem 2 we have

$$
\begin{aligned}
& \left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right) \hat{)}\left[\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right] \\
& \quad=R^{\text {lin }} \underset{m}{m}\left(\widehat{\sigma}_{t_{1}, F_{1}}\left[\sigma_{t_{2}, F_{2}}(\gamma)\right], \widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[x_{\phi(1)}\right]\right], \ldots, \widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[x_{\phi(m)}\right]\right]\right) \\
& \quad=\widehat{\sigma}_{t_{1}, F_{1}}\left[R^{l i n} \underset{m}{m}\left(\sigma_{t_{2}, F_{2}}[\gamma], \widehat{\sigma}_{t_{1}, F_{1} 1}\left[x_{\phi(1)}\right], \ldots, \widehat{\sigma}_{t_{1}, F_{1}}\left[x_{\phi(m)}\right]\right)\right] \\
& \quad=\left(\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}}\right)\left[\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right] .
\end{aligned}
$$

If β has the form $\neg F$ and we assume that $\left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right)[F]=\left(\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}}\right)[F]$, then

$$
\begin{aligned}
\left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right)[\neg F] & =\neg\left(\widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}[F]\right]\right) \\
& =\widehat{\sigma}_{t_{1}, F_{1}}\left[\neg\left(\widehat{\sigma}_{t_{2}, F_{2}}[F]\right)\right] \\
& =\widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}[\neg(F)]\right] \\
& =\left(\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}}\right)[\neg(F)] .
\end{aligned}
$$

If β has the form $F_{1} \vee F_{2}$ and we assume that $\left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right)\left[F_{l}\right]=\left(\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}}\right)\left[F_{l}\right]$ for all $l=1,2$, then

$$
\begin{aligned}
\left.\left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right) \hat{}\right)\left[F_{1} \vee F_{2}\right] & =\widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[F_{1}\right]\right] \vee \widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[F_{2}\right]\right] \\
& =\widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[F_{1}\right] \vee \widehat{\sigma}_{t_{2}, F_{2}}\left[F_{2}\right]\right] \\
& =\widehat{\sigma}_{t_{1}, F_{1}}\left[\widehat{\sigma}_{t_{2}, F_{2}}\left[F_{1} \vee F_{2}\right]\right. \\
& =\left(\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}}\right)\left[F_{1} \vee F_{2}\right] .
\end{aligned}
$$

It follows from Lemma 3 that the binary operation \circ_{r} satisfies the associative law. We prove this fact in the next lamma.

Lemma 4. Let $t_{1}, t_{2}, t_{3} \in W_{(n)}^{\text {lin }}\left(X_{n}\right), F_{1}, F_{2}, F_{3} \in \underset{((n),(m))}{\mathscr{F}_{(n)}^{\text {lin }}}\left(X_{m}^{\text {lin }}\right)$. Then for any $\sigma_{t_{1}, F_{1},}, \sigma_{t_{2}, F_{2}}, \sigma_{t_{3}, F_{3}} \in$ Hyp ${ }^{\text {lin }}((n),(m))$, we have

$$
\left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right) \circ_{r} \sigma_{t_{3}, F_{3}}=\sigma_{t_{1}, F_{1}} \circ_{r}\left(\sigma_{t_{2}, F_{2}} \circ_{r} \sigma_{t_{3}, F_{3}}\right) .
$$

Proof. Using Lemma 3 and using the fact that o satisfies the associative law, it can be shown that \circ_{r} satisfies the associative law. In fact, we have

$$
\begin{aligned}
\left(\sigma_{t_{1}, F_{1}} \circ_{r} \sigma_{t_{2}, F_{2}}\right) \circ_{r} \sigma_{t_{3}, F_{3}} & =\left(\sigma_{t_{1}, F_{1}} \circ \circ_{r} \sigma_{t_{2}, F_{2}}\right) \circ \sigma_{t_{3}, F_{3}} \\
& =\left(\widehat{\sigma}_{t_{1}, F_{1}} \circ \widehat{\sigma}_{t_{2}, F_{2}}\right) \circ \sigma_{t_{3}, F_{3}} \\
& =\widehat{\sigma}_{t_{1}, F_{1}} \circ\left(\widehat{\sigma}_{t_{2}, F_{2}} \circ \sigma_{t_{3}, F_{3}}\right) \\
& =\widehat{\sigma}_{t_{1}, F_{1}} \circ\left(\sigma_{t_{2}, F_{2}} \circ r \sigma_{t_{3}, F_{3}}\right) \\
& =\sigma_{t_{1}, F_{1}} \circ r\left(\sigma_{t_{2}, F_{2}} \circ_{r} \sigma_{t_{3}, F_{3}}\right) .
\end{aligned}
$$

Let $\sigma_{i d}$ be a linear hypersubstitution for algebraic systems which maps the operation symbol f to the linear term $f\left(x_{1}, \ldots, x_{n}\right)$ and maps the relational symbol γ to the linear formula $\gamma\left(x_{1}, \ldots, x_{m}\right)$, i.e. $\sigma_{i d}(f)=f\left(x_{1}, \ldots, x_{n}\right)$ and $\sigma_{i d}(\gamma)=\gamma\left(x_{1}, \ldots, x_{m}\right)$.

Lemma 5. For any linear term $t \in W_{(n)}^{\text {lin }}\left(X_{n}\right)$ and linear formula $\beta \in \mathscr{F} \mathscr{F}_{((n),(m))}^{\text {lin }}\left(W_{(n)}^{\text {lin }}\left(X_{m}\right)\right)$, we have $\widehat{\sigma}_{i d}[t]=t$ and $\widehat{\sigma}_{i d}[\beta]=\beta$.

Proof. The proof is straightforward and hence omitted.
A linear hypersubstitution $\sigma_{i d}$ is claimed to be an identity, which we will prove this fact in the next lemma.

Lemma 6. Let $\sigma_{i d} \in \operatorname{Hyp}{ }^{l i n}((n),(m))$. Then $\sigma_{i d}$ is an identity element with respect to \circ_{r}.
Proof. First, we prove that $\sigma_{i d}$ is a left identity element by using Lemma 5. Let $\sigma_{t, F} \in$ $H y p{ }^{l i n}((n),(m))$. Then we have $\left(\sigma_{i d} \circ_{r} \sigma_{t, F}\right)(f)=\left(\widehat{\sigma}_{i d} \circ \sigma_{t, F}\right)(f)=\widehat{\sigma}_{i d}\left[\sigma_{t, F}(f)\right]=\sigma_{t, F}(f)$. Now, we show that $\sigma_{i d}$ is a right identity element. Let $\sigma_{t, F} \in \operatorname{Hyp}{ }^{l i n}((n),(m))$. By Theorem 1, we obtain that $\left(\sigma_{t, F} \circ_{r} \sigma_{i d}\right)(f)=\widehat{\sigma}_{t, F}\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=S^{\text {lin }}{ }_{n}^{n}\left(\sigma_{t, F}(f), x_{1}, \ldots, x_{n}\right)=\sigma_{t, F}(f)$ and by Theorem 2 we have $\left(\sigma_{t, F} \circ_{r} \sigma_{i d}\right)(\gamma)=\widehat{\sigma}_{t, F}\left[\gamma\left(x_{1}, \ldots, x_{m}\right)\right]=R^{\text {lin }}{ }_{m}^{m}\left(\sigma_{t, F}(\gamma), x_{1}, \ldots, x_{m}\right)=\sigma_{t, F}(\gamma)$. Therefore, $\sigma_{t, F} \circ_{r} \sigma_{i d}=\sigma_{t, F}=\sigma_{i d}{ }^{\circ}{ }_{r} \sigma_{t, F}$.

Theorem 3. $\mathscr{H} y p^{l i n}((n),(m)):=\left(H_{y p}^{l i n}((n),(m)), \circ_{r}, \sigma_{i d}\right)$ is a monoid.
Proof. From Lemma 4 and 6, the conclusion holds.
Next, we study some semigroup properties of $\mathscr{H} y p^{\text {lin }}((n),(m))$, especially we characterize idempotency and regularity of $\sigma_{t, F} \in H y p{ }^{l i n}((n),(m))$.

4. Regularity of $\mathscr{H} y p^{\text {lin }}((n),(m))$

Firstly, we separate the classes of all linear hypersubstitutions of type $((n),(m))$ by considering the image of a mapping $\sigma_{t, F}$ in several forms. Since the set $W_{(n)}^{l i n}\left(X_{n}\right)$ contains elements in following forms: $x_{i} \in X_{n}$ and $f\left(x_{\left.\pi(1), \ldots, x_{\pi(n)}\right) \text { where } \pi \in S_{n} \text { and the set } \mathscr{F}_{((n),(m))}^{\text {lin }}\left(W_{(n)}^{l i n}\left(X_{m}\right)\right), ~(n)}\right.$
contains all m-ary linear formulas in four forms as follows: $x_{l} \approx x_{k}, \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$ with $\phi \in S_{m}$, these lead us to use the connective "negation" and "or" for the first and second forms. So we can separate the class of linear hypersubstitutions into sixteen classes and we denote by the following notations:

For any $\sigma_{t, F} \in H y p^{l i n}((n),(m)), \pi \in S_{n}, \phi \in S_{m}, l, k, i_{1}, i_{2}, i_{3}, i_{4} \in\{1, \ldots, m\}$ with $l \neq k$ and $i_{1}, i_{2}, i_{3}, i_{4}$ are all distinct we denote:

$$
\begin{aligned}
& C_{1}:=\left\{\sigma_{t, F} \mid t=x_{i} \in X_{n}, F=x_{l} \approx x_{k}\right\}, \\
& C_{2}:=\left\{\sigma_{t, F} \mid t=x_{i} \in X_{n}, F=\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right\}, \\
& C_{3}:=\left\{\sigma_{t, F} \mid t=x_{i} \in X_{n}, F=\neg\left(x_{l} \approx x_{k}\right)\right\}, \\
& C_{4}:=\left\{\sigma_{t, F} \mid t=x_{i} \in X_{n}, F=\neg \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right\}, \\
& C_{5}:=\left\{\sigma_{t, F} \mid t=x_{i} \in X_{n}, F=\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right)\right\}, \\
& C_{6}:=\left\{\sigma_{t, F} \mid t=x_{i} \in X_{n}, F=\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right)\right\}, \\
& C_{7}:=\left\{\sigma_{t, F} \mid t=x_{i} \in X_{n}, F=\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right)\right\}, \\
& C_{8}:=\left\{\sigma_{t, F} \mid t=x_{i} \in X_{n}, F=\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right)\right\}, \\
& C_{9}:=\left\{\sigma_{t, F} \mid t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=x_{l} \approx x_{k}\right\}, \\
& C_{10}:=\left\{\sigma_{t, F} \mid t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\gamma\left(x_{\left.\left.\phi(1), \ldots, x_{\phi(m)}\right)\right\},},\right.\right. \\
& C_{11}:=\left\{\sigma_{t, F} \mid t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\neg\left(x_{l} \approx x_{k}\right)\right\}, \\
& C_{12}:=\left\{\sigma_{t, F} \mid t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\neg \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right\}, \\
& C_{13}:=\left\{\sigma_{t, F} \mid t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right)\right\}, \\
& C_{14}:=\left\{\sigma_{t, F} \mid t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right)\right\}, \\
& C_{15}:=\left\{\sigma_{t, F} \mid t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right)\right\}, \\
& C_{16}:=\left\{\sigma_{t, F} \mid t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right)\right\} .
\end{aligned}
$$

We note that $P=\left\{C_{1}, \ldots, C_{16}\right\}$ is a partition of Hyp ${ }^{\text {lin }}((n),(m))$.
We now introduce definitions of idempotent and regular elements for Hyp ${ }^{\text {lin }}((n),(m))$ with respect to \circ_{r}. An element $\sigma_{t, F} \in H y p{ }^{\text {lin }}((n),(m))$ is said to be idempotent if $\sigma_{t, F} \circ_{r} \sigma_{t, F}=\sigma_{t, F}$, that is, $\left(\sigma_{t, F} \circ_{r} \sigma_{t, F}\right)(f)=\sigma_{t, F}(f)$ and $\left(\sigma_{t, F} \circ_{r} \sigma_{t, F}\right)(\gamma)=\sigma_{t, F}(\gamma)$ and $\sigma_{t, F} \in H y p p^{\text {lin }}((n),(m))$ is called regular if there is an element $\sigma_{t^{\prime}, F^{\prime}} \in \operatorname{Hyp} p^{\operatorname{lin}}((n),(m))$ such that $\sigma_{t, F}=\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}$. The semigroup Hyp ${ }^{l i n}((n),(m))$ is called regular if every element in $H y p^{l i n}((n),(m))$ is regular. Furthermore, we denote the set of all idempotent and regular elements in Hyplin $((n),(m))$ by $E\left(H y p^{l i n}((n),(m))\right)$ and $\operatorname{Reg}\left(H y p^{l i n}((n),(m))\right)$, respectively.

First, we introduce the following lemma which is an important tool to study the idempotent elements in $\mathscr{H} y p^{l i n}((n),(m))$.

Lemma 7. For each $\sigma_{t, F} \in \operatorname{Hyp}{ }^{\text {lin }}((n),(m))$. Then $\sigma_{t, F}$ is idempotent in $\mathscr{H} y p{ }^{\text {lin }}((n),(m))$ if and only if $\widehat{\sigma}_{t, F}[t]=t$ and $\widehat{\sigma}_{t, F}[F]=F$.

Proof. Assume that $\sigma_{t, F}$ is idempotent. We now consider

$$
\begin{aligned}
\widehat{\sigma}_{t, F}[t] & =\widehat{\sigma}_{t, F}\left[\sigma_{t, F}(f)\right]=\left(\widehat{\sigma}_{t, F} \circ \sigma_{t, F}\right)(f)=\left(\sigma_{t, F} \circ \circ_{r} \sigma_{t, F}\right)(f) \\
& =\sigma_{t, F}(f)=t
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{\sigma}_{t, F}[F] & =\widehat{\sigma}_{t, F}\left[\sigma_{t, F}(\gamma)\right]=\left(\widehat{\sigma}_{t, F} \circ \sigma_{t, F}\right)(\gamma) \\
& =\left(\sigma_{t, F} \circ_{r} \sigma_{t, F}\right)(\gamma)=\sigma_{t, F}(\gamma) \\
& =F .
\end{aligned}
$$

Conversely, let $\widehat{\sigma}_{t, F}[t]=t$ and $\widehat{\sigma}_{t, F}[F]=F$. Then, we have

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t, F}\right)(f) & =\left(\widehat{\sigma}_{t, F} \circ \sigma_{t, F}\right)(f)=\widehat{\sigma}_{t, F}\left[\sigma_{t, F}(f)\right] \\
& =\widehat{\sigma}_{t, F}[t]=t \\
& =\sigma_{t, F}(f)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t, F}\right)(\gamma) & =\left(\widehat{\sigma}_{t, F} \circ \sigma_{t, F}\right)(\gamma)=\widehat{\sigma}_{t, F}\left[\sigma_{t, F}(\gamma)\right] \\
& =\widehat{\sigma}_{t, F}[F]=F \\
& =\sigma_{t, F}(\gamma) .
\end{aligned}
$$

This shows that $\sigma_{t, F}$ is idempotent.
Theorem 4. Let $\sigma_{t, F} \in \operatorname{Hyp}^{\operatorname{lin}}((n),(m))$. Then the following statements hold.
(i) Every $\sigma_{t, F} \in C_{1}$ is idempotent.
(v) Every $\sigma_{t, F} \in C_{6}$ is idempotent.
(ii) Every $\sigma_{t, F} \in C_{3}$ is idempotent.
(vi) Every $\sigma_{t, F} \in C_{7}$ is idempotent.
(iii) Every $\sigma_{t, F} \in C_{4}$ is not idempotent.
(vii) Every $\sigma_{t, F} \in C_{8}$ is idempotent.
(iv) Every $\sigma_{t, F} \in C_{5}$ is idempotent.

Proof. (i) We first prove that $\sigma_{t, F} \in C_{1}$ is idempotent. To do this, let $\sigma_{t, F} \in B_{1}$. Then $t=x_{i}$, $F=x_{l} \approx x_{k}$. We consider $\widehat{\sigma}_{t, F}\left[x_{i}\right]=x_{i}$ and $\widehat{\sigma}_{t, F}\left[x_{l} \approx x_{k}\right]=\widehat{\sigma}_{t, F}\left[x_{l}\right] \approx \widehat{\sigma}_{t, F}\left[x_{k}\right]=x_{l} \approx x_{k}$. By Lemma 7, $\sigma_{t, F}$ is idempotent.
(ii) Let $\sigma_{t, F} \in C_{3}$. Then $t=x_{i}, F=\neg\left(x_{l} \approx x_{k}\right)$ so that $\widehat{\sigma}_{t, F}\left[x_{i}\right]=x_{i}$ and $\widehat{\sigma}_{t, F}\left[\neg\left(x_{l} \approx x_{k}\right)\right]=\neg\left(\widehat{\sigma}_{t, F}\left[x_{l} \approx\right.\right.$ $\left.\left.x_{k}\right]\right)=\neg\left(\widehat{\sigma}_{t, F}\left[x_{l}\right] \approx \widehat{\sigma}_{t, F}\left[x_{k}\right]\right)=\neg\left(x_{l} \approx x_{k}\right)$. By Lemma $7, \sigma_{t, F}$ is idempotent.
(iii) Let $\sigma_{t, F} \in C_{4}$. Then $t=x_{i}, F=\neg \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$. To show that it is not idempotent, we consider

$$
\begin{aligned}
\widehat{\sigma}_{t, F}\left[\neg \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right] & =\neg\left(R^{\left.\operatorname{lin} \underset{m}{m}\left(\neg \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right), x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right)}\right. \\
& =\neg\left(\neg\left(\gamma\left(x_{\phi(\phi(1))}, \ldots, x_{\phi(\phi(m)))}\right)\right)\right. \\
& =\gamma\left(x_{\phi(\phi(1))}, \ldots, x_{\phi(\phi(m))}\right) \\
& \neq \neg \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right) .
\end{aligned}
$$

Therefore, every $\sigma_{t, F} \in C_{4}$ is not idempotent.
(iv) Let $\sigma_{t, F} \in C_{5}$. Then $t=x_{i}$ and $F=\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right)$. Clearly, $\widehat{\sigma}_{t, F}\left[x_{i}\right]=x_{i}$. Next, we consider

$$
\begin{aligned}
\widehat{\sigma}_{t, F}\left[\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right)\right] & =\widehat{\sigma}_{t, F}\left[x_{i_{1}} \approx x_{i_{2}}\right] \vee \widehat{\sigma}_{t, F}\left[x_{i_{3}} \approx x_{i_{4}}\right] \\
& =\widehat{\sigma}_{t, F}\left[x_{i_{1}}\right] \approx \widehat{\sigma}_{t, F}\left[x_{i_{2}}\right] \vee \widehat{\sigma}_{t, F}\left[x_{i_{3}}\right] \approx \widehat{\sigma}_{t, F}\left[x_{i_{4}}\right] \\
& =\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right) .
\end{aligned}
$$

Thus $\sigma_{t, F} \in C_{5}$ is idempotent.
(v)-(vii) Similarly to the proof of (iv).

The following example shows that there is an element in C_{2} which is not idempotent.
Example 3. Let ((4),(3)) be a type, i.e., we have one quaternary operation symbol and one ternary relation symbol, say f and γ, respectively. If $\sigma_{t, F} \in B_{2}$ with $t=x_{4}$ and $F=\gamma\left(x_{2}, x_{3}, x_{1}\right)$, then $\widehat{\sigma}_{t, F}[F]=\widehat{\sigma}_{t, F}\left[\gamma\left(x_{2}, x_{3}, x_{1}\right)\right]=R^{\operatorname{lin}}{ }_{3}^{3}\left(\sigma_{t, F}(\gamma), x_{2}, x_{3}, x_{1}\right)=R^{\operatorname{lin}}{ }_{3}^{3}\left(\gamma\left(x_{2}, x_{3}, x_{1}\right), x_{2}, x_{3}, x_{1}\right)=$ $\gamma\left(x_{3}, x_{1}, x_{2},\right) \neq F$. So, $\sigma_{t, F}$ in this form is not idempotent.

We have to find some necessary conditions for the elements in C_{2} which are idempotent. The next theorem shows such condition.

Theorem 5. Let $\sigma_{t, F} \in C_{2}$. Then $\sigma_{t, F}$ is idempotent if and only if $\phi(j)=j$ for all $j=1, \ldots, m$.
 $i=1, \ldots, m$. We now consider $\widehat{\sigma}_{t, F}\left[\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]=R^{\operatorname{lin}{ }_{m}^{m}}\left(\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right), x_{\phi(1)}, \ldots, x_{\phi(m)}\right)=$ $\gamma\left(x_{\phi(\phi(1))}, \ldots, x_{\phi(\phi(m))}\right)$ and by assumption we have that $\widehat{\sigma}_{t, F}\left[\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]=\gamma\left(x_{\phi(\phi(1))}, \ldots, x_{\phi(\phi(m))}\right)$ $\neq \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$ and thus $\sigma_{t, F}$ is not idempotent. Conversely, assume that the condition holds. Clearly, $\widehat{\sigma}_{t, F}\left[x_{i}\right]=x_{i}$ and it is not hard to verify that $\widehat{\sigma}_{t, F}\left[\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]=\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$. Thus by using Lemma 7 , we get that $\sigma_{t, F}$ is idempotent.

Now, it comes to characterize the idempotent elements in C_{9}, \ldots, C_{16}. We first show that all elements in C_{12} are not idempotent and then show that the idempotency of C_{9}, \ldots, C_{16} need the some conditions. In fact, we have the following results.

Theorem 6. Every $\sigma_{t, F} \in C_{12}$ is not idempotent.
 that $\sigma_{t, F}$ is idempotent, by Lemma 7, we obtain that $\widehat{\sigma}_{t, F}[t]=t$ and $\widehat{\sigma}_{t, F}[F]=F$. Obviously, $\widehat{\sigma}_{t, F}\left[\neg \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right] \neg \gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$ since we have already shown this inequality holds in Theorem 4 (iii). It contradicts to the result of our assumption. Therefore, $\sigma_{t, F}$ is not idempotent.

We remark here that if $\sigma_{t, F} \in C_{9}, \ldots, C_{16}$, then $\widehat{\sigma}_{t, F}[F]$ has the same situation in the previous theorems. So, we are interesting in the way to find some conditions for the idempotency of $\widehat{\sigma}_{t, F}[t]$. The next theorem shows that if we set some conditions, then we get the characterization of idempotent elements in C_{9}, \ldots, C_{16}.

Theorem 7. Let $\sigma_{t, F} \in \operatorname{Hyp}^{\text {lin }}((n),(m))$. Then the following statements hold.
(i) $\sigma_{t, F} \in C_{9}$ is idempotent if and only if $\pi(i)=i$ for all $i=1, \ldots, n$.
(ii) $\sigma_{t, F} \in C_{10}$ is idempotent if and only if $\pi(i)=i$ for all $i=1, \ldots, n$ and $\phi(j)=j$ for all $j=1, \ldots, m$.
(iii) $\sigma_{t, F} \in C_{11}$ is idempotent if and only if $\pi(i)=i$ for all $i=1, \ldots, n$.
(iv) $\sigma_{t, F} \in C_{13}$ is idempotent if and only if $\pi(i)=i$ for all $i=1, \ldots, n$.
(v) $\sigma_{t, F} \in C_{14}$ is idempotent if and only if $\pi(i)=i$ for all $i=1, \ldots, n$.
(vi) $\sigma_{t, F} \in C_{15}$ is idempotent if and only if $\pi(i)=i$ for all $i=1, \ldots, n$.
(vii) $\sigma_{t, F} \in C_{16}$ is idempotent if and only if $\pi(i)=i$ for all $i=1, \ldots, n$.

Proof. (i) Let $\sigma_{t, F} \in B_{9}$. Then $t=f\left(x_{\left.\left.\pi(1), \ldots, x_{\pi(n)}\right), F=x_{l} \approx x_{k} \text {. Now we may assume that } \pi(i) \neq 1010\right)}\right.$ i for some $i=1, \ldots, n$. Then $\widehat{\sigma}_{t, F}\left[f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right]=S^{\operatorname{lin}}{ }_{n}^{n}\left(f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), x_{\pi(1)}, \ldots, x_{\pi(n)}\right)=$ $f\left(x_{\pi(\pi(1))}, \ldots, x_{\pi(\pi(n))}\right)$. By our assumption,

$$
f\left(x_{\pi(\pi(1))}, \ldots, x_{\pi(\pi(n))}\right) \neq f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

and thus $\sigma_{t, F}$ is not idempotent. Conversely, assume that the condition holds. We now consider $\widehat{\sigma}_{t, F}\left[f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right]=\widehat{\sigma}_{t, F}\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\pi(1),}, \ldots, x_{\pi(n)}\right)$ so that $\widehat{\sigma}_{t, F}[t]=t$. We can prove similarly to the proof of Theorem 4 (i) that $\widehat{\sigma}_{t, F}[F]=F$. Therefore, $\sigma_{t, F}$ is idempotent.
(ii) Let $\sigma_{t, F} \in C_{10}$. Then $t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$. We first assume that $\pi(i) \neq i$ for some $i=1, \ldots, n$ or $\phi(j) \neq j$ for some $j=1, \ldots, m$. Then by the same manner as in the proof of (i) we can show that $\sigma_{t, F}$ is not idempotent. Conversely, assume that the condition holds. Clearly, $\widehat{\sigma}_{t, F}\left[f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right]=f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ and thus $\widehat{\sigma}_{t, F}[t]=t$. Moreover, we have that $\widehat{\sigma}_{t, F}\left[\gamma\left(x_{\phi(1)}, x_{\phi(2)}\right)\right]=\widehat{\sigma}_{t, F}\left[\gamma\left(x_{1}, \ldots, x_{m}\right)\right]=\gamma\left(x_{1}, \ldots, x_{m}\right)$, that is $\widehat{\sigma}_{t, F}[F]=F$. By Lemma $7, \sigma_{t, F}$ is idempotent.
(iii) By using Lemma 1, we can prove similarly to the proof of (i) that this statement holds.
(iv)-(vii) It is easy to verify that these statements hold.

Now, the characterization of idempotent linear hypersubstitutions are completed. Next, we study the regularity of linear hypersubstitutions. In general semigroups, we known that every idempotent element is regular. To characterize which linear hypersubstitutions in $H y p^{l i n}((n),(m))$ are regular, we consider only for the case $\sigma_{t, F}$ which is not idempotent. The characterization of regularity in $\operatorname{Hyp}^{\operatorname{lin}}((n),(m))$ can be shown in the next theorem.

Theorem 8. Let $\sigma_{t, F} \in \operatorname{Hyp}^{\operatorname{lin}}((n),(m))$. Then the following statements hold.
(i) Every $\sigma_{t, F} \in C_{2}$ is regular.
(ii) Every $\sigma_{t, F} \in C_{4}$ is regular.
(iii) Every $\sigma_{t, F} \in C_{9}$ is regular.
(iv) Every $\sigma_{t, F} \in C_{10}$ is regular.
(v) Every $\sigma_{t, F} \in C_{11}$ is regular.
(vi) Every $\sigma_{t, F} \in C_{12}$ is regular.
(vii) Every $\sigma_{t, F} \in C_{13}$ is regular.
(viii) Every $\sigma_{t, F} \in C_{14}$ is regular.
(ix) Every $\sigma_{t, F} \in C_{15}$ is regular.
(x) Every $\sigma_{t, F} \in C_{16}$ is regular.

Proof. (i) Let $\sigma_{t, F} \in C_{2}$ with $t=x_{i}, F=\gamma\left(x_{\left.\phi(1), \ldots, x_{\phi(m)}\right) \text {. We consider regularity of } \sigma_{t, F} \in C_{2}, ~}^{\text {. }}\right.$ only the case of $\phi(j) \neq j$ for some $j=1, \ldots, m$. To do this, we choose $\sigma_{t^{\prime}, F^{\prime}} \in C_{2}$ with $t^{\prime}=x_{i}$ and $F^{\prime}=\gamma\left(x_{\phi^{-1}(1)}, \ldots, x_{\phi^{-1}(m)}\right)$ such that $\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(f)=x_{i}=\left(\sigma_{t, F}\right)(f)$ and

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(\gamma) & =\widehat{\sigma}_{t, F}\left[\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]\right] \\
& =\widehat{\sigma}_{t, F}\left[\gamma\left(x_{\phi\left(\phi^{-1}(1)\right)}, \ldots, x_{\phi\left(\phi^{-1}(m)\right)}\right)\right] \\
& =\widehat{\sigma}_{t, F}\left[\gamma\left(x_{\left(\phi \circ \phi^{-1}\right)(1)}, \ldots, x_{\left(\phi \circ \phi^{-1}\right)(m)}\right)\right] \\
& =\widehat{\sigma}_{t, F}\left[\gamma\left(x_{1}, \ldots, x_{m}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =R^{\operatorname{lin} \underset{m}{m}}\left(\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right), x_{1}, \ldots, x_{m}\right) \\
& =\sigma_{t, F}(\gamma) .
\end{aligned}
$$

This implies that $\sigma_{t, F}$ is regular.
(ii) Similarly to the proof of (i) and by using Lemma 1, we can show that every $\sigma_{t, F} \in C_{4}$ is regular.
(iii) Let $\sigma_{t, F} \in C_{9}$ with $t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=x_{l} \approx x_{k}$. We consider in the case of $\pi(i) \neq i$ for some $i=1, \ldots, n$, then there exists $\sigma_{t^{\prime}, F^{\prime}} \in C_{5}$ with $t^{\prime}=f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right)$ and $F^{\prime}=x_{l} \approx x_{k}$ such that

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(f) & =\widehat{\sigma}_{t, F}\left[S^{\text {lin }}{ }_{n}^{n}\left(f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right), x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right] \\
& =\widehat{\sigma}_{t, F}\left[f\left(x_{\left(\pi \circ \pi^{-1}\right)(1)}, \ldots, x_{\left(\pi \circ \pi^{-1}\right)(n)}\right)\right] \\
& =\widehat{\sigma}_{t, F}\left[f\left(x_{1}, \ldots, x_{n}\right)\right] \\
& =S^{\operatorname{lin} n}{ }_{n}\left(f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), x_{1}, \ldots, x_{n}\right) \\
& =f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right) \\
& =\sigma_{t, F}(f)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(\gamma) & =\widehat{\sigma}_{t, F}\left[\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{l} \approx x_{k}\right]\right] \\
& =\widehat{\sigma}_{t, F}\left[\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{l}\right] \approx \widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{k}\right]\right] \\
& =\widehat{\sigma}_{t, F}\left[x_{l} \approx x_{k}\right] \\
& =\left(x_{l} \approx x_{k}\right) .
\end{aligned}
$$

Thus $\sigma_{t, F}$ is regular.
(iv) Let $\sigma_{t, F} \in C_{10}$. Then $t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$. To prove that $\sigma_{t, F}$ is regular, we consider into three cases.

Case 1: If $\pi(i)=i$ for all $i=1, \ldots, n$ and $\phi(j) \neq j$ for some $j=1, \ldots, m$. Then there exists $\sigma_{t^{\prime}, F^{\prime}} \in C_{10}$ with $t^{\prime}=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$ and $F^{\prime}=\gamma\left(x_{\phi^{-1}(1)}, \ldots, x_{\phi^{-1}(m)}\right)$ such that

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(f) & =\widehat{\sigma}_{t, F}\left[S^{\operatorname{lin} n}\left(f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right] \\
& =\widehat{\sigma}_{t, F}\left[f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)\right] \\
& =S^{\operatorname{lin}{ }_{n}^{n}\left(f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), x_{\pi(1)}, \ldots, x_{\pi(n)}\right)} \\
& =f\left(x_{\left.\pi(1), \ldots, x_{\pi(n)}\right)}\right. \\
& =\sigma_{t, F}(f),
\end{aligned}
$$

and similar to (i), it is easy to verify that $\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(\gamma)=\sigma_{t, F}(\gamma)$.
Case 2: $\pi(i) \neq i$ for some $i=1, \ldots, n$ and $\phi(j)=j$ for all $j=1, \ldots, m$. Then there exists $\sigma_{t^{\prime}, F^{\prime}} \in C_{10}$ with $t^{\prime}=f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right)$ and $F^{\prime}=\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)$ such that $\left(\sigma_{t, F^{\circ}} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(f)=\sigma_{t, F}(f)$ which follows from (iii) and we have

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(\gamma) & =\widehat{\sigma}_{t, F}\left[R^{\left.\operatorname{lin} \underset{m}{m}\left(\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right), x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right]}\right. \\
& =\widehat{\sigma}_{t, F}\left[\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right)\right] \\
& =R^{\operatorname{lin} \underset{m}{m}\left(\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right), x_{\phi(1)}, \ldots, x_{\phi(m)}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\gamma\left(x_{\phi(1)}, \ldots, x_{\phi(m)}\right) \\
& =\sigma_{t, F}(\gamma)
\end{aligned}
$$

Case 3: $\pi(i) \neq i$ for some $i=1, \ldots, n$ and $\phi(j) \neq j$ for some $j=1, \ldots, m$. Then there exists $\sigma_{t^{\prime}, F^{\prime}} \in C_{10}$ with $t^{\prime}=f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right)$ and $F^{\prime}=\gamma\left(x_{\phi^{-1}(1)}, \ldots, x_{\phi^{-1}(m)}\right)$ such that $\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r}\right.$ $\left.\sigma_{t, F}\right)(f)=\sigma_{t, F}(f)$ and $\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(\gamma)=\sigma_{t, F}(\gamma)$. Therefore, we conclude that $\sigma_{t, F}$ is regular.
(v) This statement can be proved by using Lemma 1 and the same process as we proved in (iii).
(vi) This statement can be proved by using Lemma 1 and the same process as we proved in (iv).
(vii) Let $\sigma_{t, F} \in C_{13}$. Then $t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right)$. If $\pi(i) \neq i$ for some $i=$ $1, \ldots, n$, then there exists $\sigma_{t^{\prime}, F^{\prime}} \in C_{13}$ with $t^{\prime}=f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right)$ and $F^{\prime}=\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right)$ such that $\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(f)=\sigma_{t, F}(f)$ which follows from (iii) and we consider

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(\gamma) & =\widehat{\sigma}_{t, F}\left[\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{i_{1}} \approx x_{i_{2}}\right] \vee \widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{i_{3}} \approx x_{i_{4}}\right]\right] \\
& =\widehat{\sigma}_{t, F}\left[x_{i_{1}} \approx x_{i_{2}} \vee x_{i_{3}} \approx x_{i_{4}}\right] \\
& =\left(x_{i_{1}} \approx x_{i_{2}} \vee x_{i_{3}} \approx x_{i_{4}}\right) \\
& =\sigma_{t, F}(\gamma)
\end{aligned}
$$

Hence $\sigma_{t, F}$ is regular.
(viii) Let $\sigma_{t, F} \in C_{14}$. Then $t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right)$. If $\pi(i) \neq i$ for some $i=1, \ldots, n$, then there exists $\sigma_{t^{\prime}, F^{\prime}} \in C_{14}$ with $t^{\prime}=f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right)$ and $F^{\prime}=\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx\right.$ $x_{i_{4}}$) such that $\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(f)=\sigma_{t, F}(f)$ which follows from (iii) and we consider

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(\gamma) & =\widehat{\sigma}_{t, F}\left[\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[\neg\left(x_{i_{1}} \approx x_{i_{2}}\right)\right] \vee \widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{i_{3}} \approx x_{i_{4}}\right]\right] \\
& =\widehat{\sigma}_{t, F}\left[\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee x_{i_{3}} \approx x_{i_{4}}\right] \\
& =\widehat{\sigma}_{t, F}\left[\neg\left(x_{i_{1}} \approx x_{i_{2}}\right)\right] \vee \widehat{\sigma}_{t, F}\left[x_{i_{3}} \approx x_{i_{4}}\right] \\
& =\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee\left(x_{i_{3}} \approx x_{i_{4}}\right) \\
& =\sigma_{t, F}(\gamma)
\end{aligned}
$$

Hence $\sigma_{t, F}$ is regular.
(ix) Let $\sigma_{t, F} \in C_{15}$. Then $t=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right), F=\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right)$. If $\pi(i) \neq i$ for some $i=1, \ldots, n$, then there exists $\sigma_{t^{\prime}, F^{\prime}} \in B_{15}$ with $t^{\prime}=f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right)$ and $F^{\prime}=\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{j_{1}} \approx\right.$ $x_{j_{2}}$) such that ($\left.\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(f)=\sigma_{t, F}(f)$ which follows from (iii) and we consider

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(\gamma) & =\widehat{\sigma}_{t, F}\left[\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{i_{1}} \approx x_{i_{2}}\right] \vee \widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[\neg\left(x_{i_{3}} \approx x_{i_{4}}\right)\right]\right] \\
& =\widehat{\sigma}_{t, F}\left[\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{i_{1}} \approx x_{i_{2}}\right] \vee \neg\left(\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{i_{3}} \approx x_{i_{4}}\right]\right)\right] \\
& =\widehat{\sigma}_{t, F}\left[x_{i_{1}} \approx x_{i_{2}} \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right)\right] \\
& =\widehat{\sigma}_{t, F}\left[x_{i_{1}} \approx x_{i_{2}}\right] \vee \neg\left(\widehat{\sigma}_{t, F}\left[x_{i_{3}} \approx x_{i_{4}}\right]\right) \\
& =\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right) \\
& =\sigma_{t, F}(\gamma) .
\end{aligned}
$$

Hence $\sigma_{t, F}$ is regular.
(x) Let $\sigma_{t, F} \in C_{16}$. Then $t=f\left(x_{\left.\pi(1), \ldots, x_{\pi(n)}\right), F=\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right) \text {. If } \pi(i) \neq i \text { for }, ~(1)}\right.$ some $i=1, \ldots, n$, then there exists $\sigma_{t^{\prime}, F^{\prime}} \in C_{16}$ with $t^{\prime}=f\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}\right)$ and $F^{\prime}=\neg\left(x_{i_{1}} \approx\right.$ $\left.x_{i_{2}}\right) \vee \neg\left(x_{j_{1}} \approx x_{j_{2}}\right)$ such that $\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(f)=\sigma_{t, F}(f)$ which follows from (iii) and we consider

$$
\begin{aligned}
\left(\sigma_{t, F} \circ_{r} \sigma_{t^{\prime}, F^{\prime}} \circ_{r} \sigma_{t, F}\right)(\gamma) & =\widehat{\sigma}_{t, F}\left[\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[\neg\left(x_{i_{1}} \approx x_{i_{2}}\right)\right] \vee \widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[\neg\left(x_{i_{3}} \approx x_{i_{4}}\right)\right]\right] \\
& =\widehat{\sigma}_{t, F}\left[\neg\left(\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{i_{1}} \approx x_{i_{2}}\right]\right) \vee \neg\left(\widehat{\sigma}_{t^{\prime}, F^{\prime}}\left[x_{i_{3}} \approx x_{i_{4}}\right]\right)\right] \\
& =\widehat{\sigma}_{t, F}\left[\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right)\right] \\
& =\neg\left(\widehat{\sigma}_{t, F}\left[x_{i_{1}} \approx x_{i_{2}}\right]\right) \vee \neg\left(\widehat{\sigma}_{t, F}\left[x_{i_{3}} \approx x_{i_{4}}\right]\right) \\
& =\neg\left(x_{i_{1}} \approx x_{i_{2}}\right) \vee \neg\left(x_{i_{3}} \approx x_{i_{4}}\right) \\
& =\sigma_{t, F}(\gamma) .
\end{aligned}
$$

Hence $\sigma_{t, F}$ is regular.
We have now characterized all idempotent and regular elements of linear hypersubstitutions for algebraic systems of type $((n),(m))$. As we remarked earlier, we separated and described the classes of linear hypersubstitutions into sixteen classes and given the charaterization of idempotent elements in these classes. The situation is more comfortable than to consider the set of all linear hypersubstitutions. We applied these results to investigate the regularity. As a consequence of this section, we can describe the regularity of $\operatorname{Hyp}^{\operatorname{lin}}((n),(m))$. Every linear hypersubstitution is regular and then $\mathscr{H} y p^{\operatorname{lin}}((n),(m))$ is a regular semigroup.

5. Conclusion

We use the concepts of the partial clone of linear terms and the partial clone of linear formulas to define a mapping which is called a linear hypersubstitution for algebraic systems of type (n), (m)).

Acknowledgement

This research was supported by Chiang Mai University, Chiang Mai 50200, Thailand.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer Verlag, New York (1981), DOI: 10.1080/00029890.1984.11971342, https://books.google.co.in/books/about/A_ Course_in_Universal_Algebra.html?id=X_HboAEACAAJ\&source=kp_cover\&redir_esc=y.
[2] T. Changphas, K. Denecke and B. Pibaljommee, Linear Terms and Linear Hypersubstitutions, to be appeared in Southeast Asian Bulletin of Mathematics.
[3] M. Couceiro and E. Lehtonen, Galois theory for sets of operations closed under permutation, cylindrification and composition, Algebra Universalis 67 (2012), 273 - 297, DOI: 10.1007/s00012-012-0184-1.
[4] K. Denecke, The partial clone of linear terms, Siberian Mathematical Journal 57 (2016), 589 - 598, DOI: $10.1134 / \mathrm{s} 0037446616040030$.
[5] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes,and clone congruences, Contributions to General Algebra, Vol. 7, Verlag Hölder-Pichler-Tempsky, Wien (1991), 97 - 118.
[6] K. Denecke and D. Phusanga, Hyperformulas and solid algebraic systems, Studia Logica 90(2) (2008), 263 - 286, DOI: 10.1007/s11225-008-9152-3.
[7] K. Denecke and S.L. Wismath, Hyperidentities and Clones, CRC Press, London (2000), DOI: 10.1201/9781482287516.
[8] T. Kumduang and S. Leeratanavalee, Clone of linear terms and clone of linear formulas, East-West Journal of Mathematics 19(2) (2017), 156 - 170.
[9] A.I. Mal'cev, Algebraic Systems, Akademie-Verlag, Berlin (1973).
[10] D. Phusanga, Derived Algebric Systems, Ph.D. thesis, Universitat Potsdam, Germany (2013).
[11] S.L. Wismath, The monoid of hypersubstitutions of type (n), Southeast Asian Bulletin of Mathematics 24 (2000), 115 - 128, DOI: 10.1007/s10012-000-0115-5.

