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1. Introduction

Let H1,H> be real Hilbert space. The Split Common Fixed Problem (SCFPP) is the following
problem:

find x € F(T) such that Ax e F(S), (1.1)
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where F'(S) and F(T) stand for, respectively, the fixed point sets of T: H; — Hy and S : Ho — Ho,
respectively.
We shall denote the solution set of the SCFPP by

[:={yeF(S): Ay F(T)} = F(S)n A~Y(F(T)). (1.2)

We recall that F(S) and F(T') are nonempty, closed and convex subsets of H; and Hs, respectively.
IfT"# @, then I is closed and convex subset of H;.

Let C and @ be nonempty, closed and convex subsets of real Hilbert spaces H; and Ho,
respectively. The Split Feasibility Problem (SFP) is to find a point

x € C such that Ax€@, (1.3)

where A : Hi — Hy is a bounded linear operator. The SFP in finite-dimensional Hilbert spaces
was introduced by Censor and Elfving for modeling inverse problems which arise from phase
retrievals and in medical image reconstruction. The SFP attracts the attention of many authors
due to its application in signal processing. Various algorithms have been invented to solve it
(see, for example, [[1,/12]] and the references therein).

We observe that SCFPP is a generalization of the Split Feasibility Problem (SFP) and the
Convex Feasibility Problem (CFP) (for more details, see [3]). In order to solve (1.1I), Censor and
Segal [|3] studied, in finite-dimensional spaces, the convergence of the following algorithm:

Xni1 =S, +yAT -DAx,), n=1, (1.4)

where y € (0, %), with y being the largest eigenvalue of the matrix A’A (A’ stands for matrix y
transposition). In 2011, Moudafi [9] introduced the following relaxed algorithm:

Xn1=A—ap)y,+a,Sy,, n=1, (1.5)

where y, = x, +YA*(T —DAx,, $€(0,1), a, €(0,1), and y € (0, #), with y being the spectral
AP radius of the operator A*A. Moudafi proved weak convergence result of the algorithm (1.5)
in Hilbert spaces where S and T' are quasi-nonexpansive operators.

In this paper, we propose an algorithm which does not require the calculation or estimation
of the operator norm, to solve the two-operator Split Common Fixed Point Problem (SCFPP)
when the operators S and T' are demicontractive and prove strong convergence of sequence
generated by our proposed algorithm. Furthermore, we give numerical example of our result to
show its efficiency and implementation. Zhao and He [26]], Moudafi [9], Censor and Segal [3] to
the split common fixed point problem when the operators and demicontractive. Furthermore,
our work improves the recent works of Moudafi [10]], Tang et al. [17], Cholamjiak et al. [13],
Suantai et al. [14-16[, Vinh et al. [18] and Anantachai Padcharoen et al. [11].

2. Preliminaries

Next, we provide some definitions which will be used in the sequel.

Let T : H — H be a mapping. A point X € H is said to be a fixed point of T provided that
Tx = x. In this paper, the symbols — and — denote by the strong convergence and the weak
convergence, respectively.

The mapping T : H — H is said to be:
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(1) quasi-nonexpansive if
ITx—Tpl < llx—pl (2.1)
for all x € H and p € F(T).
(2) strictly pseudocontractive if there exists k& €[0,1) such that

ITx—Tyl? < llx - yI2 +klGx - y) - (Tx— Ty)|? (2.2)
for all x € H.
(3) pseudocontractive if
ITx - Tyl% < llx - yI% + I (x — )= (Tx - Ty)|? (2.3)
for all xe H.

(4) demicontractive (or k-demicontractive) if there exists £ < 1 such that
ITx—Tpll* < llx—pl® +Ellx - Tx|? (2.4)
for all x € H and p € F(T).

Remark 2.1. It is clear that, in a real Hilbert space H, (2.4) is equivalent to

k
5 le =Tl (2.5)
for all x€ H and p € F(T).

(x—p,x—Tx)=

Now, we give some definitions and lemmas for our main results:

Definition 2.2. A mapping T : H — H is said to be demiclosed at 0 if, for each sequence {x,}
in H, the condition that the sequence {x,} converges weakly to xo and the sequence {Tx,}
converges strongly to 0 imply 7T'x¢ = 0.

Lemma 2.3. Let H be a real Hilbert space. Then the following results hold:

D) Nl +y1? = lcl® +2¢x, ) + llyl1* for all x,y € H.

(2) llx+ ylI% < llxl +2¢y,x +y) for all x,y € H.

3) llx=yI? = llxl® =y - 2¢x ~ y,y) for all x,y € H.

4) llax+1-a)yl? =alx|®+1-a)lyl? - a(l-a)llx—y|? for all x,y € H and a € R.
Lemma 2.4. [20] Let {a,} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1=(1—ap)an+an0,+7yn
for each n =0, where

D) {a,} <[0.1] and 5 a, = oco;

n=1
(2) limsupo, <0;
n—00

o0
3) yhn=0and Y y,<oo.
n=1

Then a, — 0 as n — co.
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3. Main Results

Let H1 and Hy be two real Hilbert spaces, A : Hi — Ho be an bounded linear operator and
A*:Ho — H be a adjoint operator of A. Let T': H; — H1 be a k1-demicontractive mapping such
that T'—1I is demiclosed at 0 and C := F(T') # @. Let S : Hy — H9 be ko-demicontractive mapping
such that S — I is demiclosed at 0 and @ := F(S) # @. Suppose that the problem (SCFPP) has a
nonempty solution set Q.

Algorithm 3.1.
Initialization. Given {a,}, {B,} and {y,} be real sequences in [0, 1].
Let x1 = x € H; be arbitrary.
Step 1. Set n =1 and compute

2n =1 =an)tn, Yn=2n+pnA"(S-DAz,,
where the step size p, be chosen in such a way that
(1= k2)I(S —DAz,|I”

|A*(S —1)Az,|?
for small enough € > 0, otherwise p,, = p (p being any nonnegative value).

On = (e, e), SAz, #Az,, 3.1)

Step 2. Compute
Xn+1= (1= Brlzn + Brl(1 _Yn)yn + YnTyn]-

If y, =z, and x,41 = z,, then z, € Q.
Set n — n +1 and go to Step 1.

Lemma 3.2. Suppose that the problem (SCFPP) has a nonempty solution set Q. Then, p, defined
by is well-defined.

Proof. We observe that in algorithm the choice of the stepsize p, is independent of the
norm A. Furthermore, we show that p, is well-defined. Now, let x € Q. Then Ax =SA%x. So
IS = DAz, 1 = (S — DAz, (S —DAzy)
=((S-DAz,—(S-1)Ax,(S—-1)Az,)
=(SAz,-SAx+Ax—-Az,,(S-1)Az,)
=(SAz, -SAx,(S-DAz,)+(Ax—Az,,(S—1)Az,)
=(SAz,-SAx,(S—-DAz,)+{x—2z,,A*(S-1)Az,)

< [ISAz, —SAZ|I(S — DAzl + lx — 2, |1A*(S — Az, (3.2)
Hence, for SAz, # Az,, that is, (S —I)Az, >0, we have A*(S —I)Az, #0. This implies that p,
is well-defined. O

Lemma 3.3. Let {z,}, {x,} and {y,} be three sequences generated by Algorithm and x € Q.
Then the following inequality is satisfied.:

I¥n = &112 < ll2p — %1% = ppl(1 = EDIS — DAz, 12 — pnll A*(S — DAz, |12]. (3.3)
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Proof. Let x € Q. From and Lemma [2.3(1), we have
lyn —&I1% = 20 — £+ ppA*(S — DAz,
< llzn = %1% + 205 (20 — %, A*(S = DAz,) + p2 | A*(S - DAz, |1%,
where
P2IA*(S — DAz, |12 = p2(A*(S —1)Az,,A* (S —DAz,)
< p2(AA*(S—DAz,,(S-1DAz,)
< P21 AI2I(S — DAz, 112
Since S is a demicontractive mapping and Ax € @ = F(S), we have
(zn —%,A"(S —DAzy) = (A(z, —%),(S —DAz,)
=(A(z, —-X)+(S-DAz, = (S -1)Az,,(S-DAzy)
=(SAz, - Ax,(S—DAz,) - (S - DAz,

(3.4)

(3.5)

1
= §(||SAzn —AZIZ+ IS -~ DAz, |I1* — |1 Az, — AZI%) - (S — DAz, ||

1
< §(||Azn —AZ|% + kall(S — DAz, 11?)

1
+ E(II(S ~DAz, |2~ Az, — AZ|?) - (S -~ DAz, |1

ko—1
- 22 IS = DAz, |12

Substituting (3.5) and (3.6) into (3.4), it follows that
lyn — %12 < l2n — %12 = ppl(1 = kIS — DAz, |12 = ppllA*(S — DAz, |12].

(3.6)

O

Lemma 3.4. Let {z,,}, {x,} and {y,} be three sequences generated by Algorithm and x € Q.

Then the following inequality is satisfied:
lns1— %12 < 20 = %02 = Bu¥Yn(A = k1 =Y I Ty — ¥ ll?
— Brpnl(1=EI(S = DAz, |12 = pn | A*(S — DAz, |I%1.

Proof. By using the convexity of || - |2 and Lemma 4), we have
21 = &% = 11 = Bu) (2 — %) + Bul(L = Yn)yn +Yn T yn — &%

< (1= PBllzn — X1 + Bull (L= yn)yn +Yn Tyn — %1

= (1= PBllzn — X1 + Bull (X = yn) (W0 — B) + YTy — D171

= (1= P)llzn — &I” + Bol(1 = yn)llyn — %I
+ Yl Tyn — T = yn (1= Y Tyn — ynll?]

<(1-P)llzn = &I” + Bol(1 = yn)llyn — %I
+Ynllyn = &1+ k1llyn = Tynl®) = YL =Y T ¥ = yal?]

= (1= Pllzn =12+ Bullyn — %12 = Bryn( = k1 — YT yn — yal2.

By Lemma 3.3, we have

lnt1 = &% < (A= B)lzn — %1% = Bryn(X =1 =Y I T yn — yall®
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+ Bulllzn — %12 = pp((1=EDIS = DAz 1% = pullA*(S = DAz, %))
=llzp — %1% = Bryn(L = k1 =y Tyn — yul?
— Brpnl(X=E)DIS — DAz, |2 - pulA*(S — DAz, ||1. (3.9)
]

Theorem 3.5. Let {z,}, {x,} and {y,} be the sequences generated by Algorithm converges
strongly to an element x of ), where X is the minimum-norm solution of the problem (SCFPP),
for each n =1, the sequences {a,}, {f,} and {y,} satisfy the following conditions:

o0
(1) lim a,=0and Y a, =oc;
n—0oo n=1
(2) 0<liminffB, <limsupf, <1;
n—0o0 n—o0

(3) 0<liminfy, <limsupy, <1;
n—oo n—oo

(4) 1-%k1—7v, =€ for some € >0 small enough.

Proof. From Lemma (3.4, we have
lxn+1 =Xl < llzn — Il
Therefore, we have
lxn+1— Xl < llzn — Il
=1 -aplxy, —xl + alxll
< max{llx, — x|, [ X]}.
By induction, we have
llxn, — %I < max{llxy — I, |1}
Thus {x, —x} is bounded and so {z,}, {x,} and {y,} are bounded.
Next, we discuss two cases to establish the strong convergence.

Case 1. Suppose that {||x,+1 — X||} is monotonically decreasing sequence. Then {||x, — x|} is
convergent and, as n — oo,

lons1— %12 = 2, — %)% — 0. (3.10)
From Lemma we have

I%n+1 = E1 < 12 = £ = Bayn(L = k1 =Y Ty = yul?
— Brpal(1=E)I(S — DAz, |12 — pul A*(S — DAz, |1%]
= (1= an)xn = &% = Ba¥n(L—k1 =Y )1 Ty — yull?
— Bnpal(1= kIS = DAz, |I” = ppA*(S = DAz, |I%]
= lltn = & = 12 = BuYn(1 = k1 = Y ) Tyn — ynll®
— Bnpnl(1= kIS = DAz, |I” = pnA*(S - DAz, |I%]
< llocn = &2 + an@nlln 1? = (1= @) — x,20))

— BrYn(1=k1 =Y IITyn — ynll®
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~Bronl (1= RIS — DAz, I” ~ pull A*(S — DAz, |1*1.
Since {z,}, {x,} and {y,} are bounded, there exists .# > 0 such that
nlln I? = (1= @p) = %,20) < M
for all n = 1. Thus we have
ot = &1% =141 = 21 + By (L~ k1= Y1 Tyn ~ yul®
+Bronl(1 = RIS ~ DAz, |” = pnll A*(S = DAz, |*] < a4 .
From this together with and a, — 0 as n — oo, it follows that

lyn=Tynll— 0 and Bppal(1- k(S — DAz, [1* - pnlA*(S - Az, [*1— 0.

It follows from the condition on p, that
o < (1-FE)I(S - D)Az, %
" JA%S -DAz, |2
Also, we have

PrllA*(S = DAz, |12 < (1= kIS — DAz, |1? — el A*(S — DAz, ||
and hence we have

elA*(S DAz, |2 <1 - kIS —~ DAz, | - pul A*(S ~ DAz, 1> — 0
as n — oo, which shows that

IA*(S —DAz, % —0

as n — oo and so
lyn —2nll — 0
as n — oo. Furthermore, we obtain from Lemma (3.3|that
0 <e(L—kI(S ~ DAz, % < pn(1-E2I(S ~ DAz, I
<llzn = I = llyn — &1+ P31 A*(S - DAz, |1?
<11 = @p)xn —x* I+ PRI A*(S - DAz, |1
<l =1 = %11 =21 + @nllnll* + p7IA*(S = DAz, ]|* — 0
as n — oo. This implies that
IS -DAz,ll—0
as n — 0o, we have
lzn —2xnll = (1 = ap)xn —xnll < apllxy,l — 0
and
% = ynll < |lyn —2nll +ll2n =2l = 0
as n — oo. Since ||x, — y,|| — 0 and ||y, — Ty,| — 0 as n — oo, we obtain
l2n = Tynll < llxn = ypll +1yn = Tynll — 0
as n — oo. Since ||z, —y,|l — 0 and ||y, — T'y,| — 0 as n — co, we obtain

7 _Tyn” <llzn = yull+ llyn _Tyn” — 0.
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Therefore, from Algorithm it follows that
l2n+1 = Tynll® = 11 = Bu)zn = Tyn) + Bull L =Yy + ¥nTyn — Tynll®
<1 = Plzn—Tyull®+ Bal X = Y)yn + Y Tyn — Tynll®
= (1= Plzn = Tynl®+ Bull(L =y )y — Ty)II?
<1 -PBlzn—Tynl®+ Bl =Y (yn — Ty)I> — 0
as n — oo, which implies that
lxn+1—%nll < lxn+1—Tynll + l1xn = Tynll — 0

as n — oo. Since {z,} is bounded, there exists a subsequence {z, B of {z,} with zn; — v € Hj.
Thus, by 2z,; — v € Hy and |y, —znl — 0 as n — oo, it follows that y,;, — v € H;. By the
demiclosedness principle of T'—I at 0 and (3.9), we have v € F(T) = C. Since A is a linear
bounded operator and z,, — v € H1, we have Az,; — Av € Hy. Hence, by (3.18), we have

ISAzp; — Azl — 0
as j — oo. Since S — I is demiclosed at 0, it follows that Av € F(S)=@Q and so v € Q2.

Next, we prove that the sequence {x,} converges strongly to the point v. From Lemma
and Lemma it follows that

lxne1—vl1? < llzp —vll?
= 11 - @p)(xp —v) — @pol?
= (1- an)?llxn = vll* + @z llv]1? = 2 (1 - @) (x, — v,0)
< (1= an)llx, — vl + an(@pllvl? = 2(1 - @y)(x, — v,0)). (3.19)
Since a, |lv]2—2(1-a,){x, —v,v) — 0 as n — oo. Fromand (3.19), it follows that [|x,, —v| — O,
that is, x,, — v as n — oo.
Case II. Suppose that {||x,+1 — Z|l} is not monotonically decreasing. Let I'; = ||lx,, — %% and
7:N — N be a a function defined by
T(n):=max{fkeN:k=n, 'y <T'pi1}
for all n = ngy (for some ng large enough). Clearly, 7 is a nondecreasing sequence such that
7(n) — oo as n — oo and
Iiny+1—To() 20

for all n = ngy. From (3.12)), it follows that
ar(n)%

-0
Br)Y ()L — k1= Yr(n)

2
”yr(n) - Tyr(n) I <
as n — oo and so

| Ye(n) — Tyr(n) | —0
as n — oo.
Next, we show that [|[(S —I)Az;ll — 0 as n — oo,

1Y20) — 2r) |l = Pz 1A (S — DAz i)l < Pz IA* IS — DAz ()| — 0
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and

lven) =%zl = 0, Xzn)+1 —Xzm)ll — O

as n — oo. Since {z,} is bounded, there exists a subsequence {z;(;)} of {v,} which converges
weakly to a point v € Hy. Since [z27(n) — %7(n)| = 0 as n — oo and ||y, —z,ll = 0 as n — oo, it
follows that

Xr(n) ~VEH1, yin)—vEH;.
By the demiclosedness principle of T'—1 at 0 and | y;() — Tyrm)ll — 0 as n — oo, we have
veF(T)=C.
Similarly, we can show that v € F(S) = . Therefore, v € Q2. Note that, for all n = n,
0 =< llxr(ny+1 = vlI®
< 1yztm) — 011 + 22 — 0117
< Ay [~2(Zr(n) — U, 0) = 122y — V1121,
which implies that
l2¢2n) = V11 < =2¢22(n) — v, V).
Thus we have
lim [x;(,)—vll =0.
n—oo
Hence we have
lim FT(n) = lim Fr(n)+1 =0.
n—oo n—oo
Moreover, for all n = ng, we have I';(,) <I';(n)4+1 if n # 7(n) (that is, 7(n) <n) since I'; = I';,1 for
7(n)+1 < j < n. Therefore, it follows that, for all n = n,
0=<Iy < maX{rr(n)a FT(I’L)+1} =I'tn)+1

and so lim I',, =0, that is, {x,} converges strongly to v. This completes the proof. O
n—oo

Corollary 3.6. Let H1 and Hs be two real Hilbert spaces, A : Hi — Hy be a bounded linear
operator and A* : Hy — H1 be an adjoint operator of A. Let T : Hy — H1 be a quasi-nonexpansive
mapping such that T — 1 is demiclosed at 0 and C := F(T) # @. Let S : Hy — Hy be a quasi-
nonexpansive mapping such that S —1I is demiclosed at 0 and @ := F(S) # ¢. Assume that
the problem (SCFPP) has a nonempty solution set I'. Let {z,}, {x,} and {y,} be the sequences
generated by Algorithm [3.1] converges strongly to an element x of Q, where & is the minimum-
norm solution of the problem (SCFPP), for each n =1, the sequences {a,}, {B,} and {y,} satisfy
the following conditions:
(1) lim a, =0and % a, =00;
n—oo n=1

(2) 0<liminffB, <limsupf, <1,
n—0o0 n—o0

(3) 0<liminfy, <limsupy, <1;
n—oo n—oo

(4) 1-k1—7v, =€ for some € >0 small enough.

Proof. The conclusion follows from Theorems|3.5 O
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4. Numerical Examples

In this section, we give a numerical example to demonstrate the convergence of our algorithm.
All codes were written in MATLAB 2017b and run on Dell i-5 Core laptop.

Example 4.1. Let H; = (R3, |- |l2) = Hs. Let S, T : R? — R be two mappings defined by

46 By

It is clear that both 7" and S are 0-demicontractive mappings.
The stopping criterion for our testing method is taken as

l%ns1—%nlle <1074,

aq 4
where x1=| b |=|1].
C3 5

7 -3 -5
Let us assume that A=(-8 4 -8].
-5 -8 7

Then Algorithm [3.1|becomes as follows:

Algorithm 4.2,

oy . . . 1 1 1 3
Initialization. Given a, = NSt Brn = o In =5 [1 + Toovisil

Let x1 = x € H1 be arbitrary.

Step 1. Set n =1 and compute

1
zZpn=|1-
" ( vn+1

where the step size p, be chosen in such a way that

(1= k2)I(S ~ DAz, |I”
IA*(S — DAz, |2

for small enough € > 0, otherwise p, = p (p being any nonnegative value).

)xn, Yo = zn+pnA*(S—DAzp,

On = (e, e), SAz, #Az,, 4.1)

Step 2. Compute

e gl -2 )
80vn+2/ " 80vn+2 50 100vns 1"

]Tyn].

Xn+1= (1

1 3
+ = [1 +—
5 100vn+1
If y, =2z, and x,,+1 = z,, then z,, € Q.

Set n —n +1 and go to Step 1.

Case I: Take p =0.01. Then we have the numerical analysis tabulated in Table|l|and show in
Figure
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Table 1. Example , Case

P Time taken Iterations ap b, Cn lXni1—2xnll2
2 1.1656 0.2959 1.4584 4.5905
3 0.4905 0.1261 0.6142 1.0942
4 0.2443 0.0635 0.3061 0.3993
5 0.1345 0.0354 0.1687 0.1781
6 0.0793 0.0211 0.0996 0.0896
7 0.0492 0.0132 0.0618 0.0490
8 0.0317 0.0086 0.0399 0.0284
9 0.0211 0.0057 0.0265 0.0173
10 0.0144 0.0039 0.0181 0.0109

0.01 0.174088 11 0.0100 0.0028 0.0126 0.0071
12 0.0071 0.0020 0.0090 0.0047
13 0.0051 0.0014 0.0065 0.0032
14 0.0037 0.0011 0.0047 0.0022
15 0.0028 0.0008 0.0035 0.0016
16 0.0021 0.0006 0.0026 0.0011
17 0.0016 0.0004 0.0020 0.0008
18 0.0012 0.0003 0.0015 0.0006
19 0.0009 0.0003 0.0012 0.0005
20 0.0007 0.0002 0.0009 0.0003
21 0.0006 0.0002 0.0007 0.0003
22 0.0004 0.0001 0.0006 0.0002
23 0.0003 0.0001 0.0004 0.0002
24 0.0003 0.0001 0.0003 0.0001

||:L'n +1 — -'L"rl,ll

—p=001

0 5 10

Figure 1. Example , Case 1
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Case-1I: Take p = 0.001. Then we have the numerical analysis tabulated in Table [2|and show in
Figure

Table 2. Example , Case 11

’ P Time taken Iterations an, b, Cn |%p+1—Xnll2 ‘
2 1.1695 0.2943 1.4624 4.5853
3 0.4935 0.1249 0.6173 1.0953
4 0.2464 0.0627 0.3083 0.4005
5 0.1360 0.0348 0.1703 0.1789
6 0.0804 0.0206 0.1007 0.0902
7 0.0500 0.0129 0.0626 0.0494
8 0.0323 0.0083 0.0404 0.0287
9 0.0215 0.0056 0.0269 0.0175
10 0.0147 0.0038 0.0184 0.0111

0.001 0.022494 11 0.0102 0.0027 0.0128 0.0072
12 0.0073 0.0019 0.0091 0.0048
13 0.0053 0.0014 0.0066 0.0033
14 0.0038 0.0010 0.0048 0.0023
15 0.0029 0.0008 0.0036 0.0016
16 0.0021 0.0006 0.0027 0.0012
17 0.0016 0.0004 0.0020 0.0008
18 0.0012 0.0003 0.0016 0.0006
19 0.0010 0.0003 0.0012 0.0005
20 0.0007 0.0002 0.0009 0.0003
21 0.0006 0.0002 0.0007 0.0003
22 0.0005 0.0001 0.0006 0.0002
23 0.0004 0.0001 0.0005 0.0002
24 0.0003 0.0001 0.0004 0.0001

||:I;71 +1 — Tn ||

0 5 10 15 20 25
Number of iterations

Figure 2. Example , Case 11
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Case III: Take p =0.0001. Then we have the numerical analysis tabulated in Table |3[and show
in Figure

Table 3. Example 4.1} Case III

’ P Time taken Iterations a, b, Cn lXni1—Xnll2 ‘
2 1.1699 0.2942 1.4628 4.5847
3 0.4938 0.1248 0.6176 1.0955
4 0.2466 0.0626 0.3085 0.4006
5 0.1362 0.0347 0.1704 0.1790
6 0.0805 0.0206 0.1008 0.0903
7 0.0500 0.0128 0.0626 0.0494
8 0.0323 0.0083 0.0405 0.0287
9 0.0215 0.0056 0.0270 0.0175
10 0.0147 0.0038 0.0184 0.0111
0.0001 0.015636 11 0.0103 0.0027 0.0129 0.0072
12 0.0073 0.0019 0.0091 0.0048
13 0.0053 0.0014 0.0066 0.0033
14 0.0039 0.0010 0.0048 0.0023
15 0.0029 0.0008 0.0036 0.0016
16 0.0021 0.0006 0.0027 0.0012
17 0.0016 0.0004 0.0020 0.0008
18 0.0012 0.0003 0.0016 0.0006
19 0.0010 0.0003 0.0012 0.0005
20 0.0007 0.0002 0.0009 0.0003
21 0.0006 0.0002 0.0007 0.0003
22 0.0005 0.0001 0.0006 0.0002
23 0.0004 0.0001 0.0005 0.0002
24 0.0003 0.0001 0.0004 0.0001
5

0 5 10 15 20 25
Number of iterations

Figure 3. Example _ Case III
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Remark 4.3. We see that the smaller the choice of A > 0 chosen, the less the number of iterations
required.
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