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1. Introduction
In this article, we will focus on finding the solution of classical Variational Inequality (VI)
problem, that is to find u in non-empty, closed, convex set C in Hilbert space H with inner
product 〈·〉 such that

〈 f u, x−u〉 ≥ 0, (1.1)

for all x ∈ C where f : H → H is defined mapping. This problem captures various applications
arising in many areas, such as partial differential equations, optimal control, optimization,
mathematical programming and some other nonlinear problems (see, e.g., [19] and references
therein). It is well-known that if f is L-Lipschitz continuous and η-strongly monotone on C,
that is,

‖ f (x)− f (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ C,

and

〈 f (x)− f (y), x− y〉 ≥ η‖x− y‖2, ∀ x, y ∈ C,

where L > 0 and η> 0 are the Lipschitz and strong monotonicity constant, respectively, then
the variational inequality (1.1) has a unique solution.

However, if f is simply L-Lipschitz continuous and monotone on C, that is,

〈 f (x)− f (y), x− y〉 ≥ 0, ∀ x, y ∈ C,

but not η-strongly monotone, then the variational inequality (1.1) may fails to get a solution.
Several authors have introduced and analyzed several iterative methods for solving the

variational inequality (1.1). The one step projection method for optimization problems:

xk+1 = PC(xk −αk f (xk)),

for each k ≥ 1, where αk ∈
(
0, 2η

L2

)
and PC denotes the Euclidean least distance projection onto C.

The projection method provided that the mapping f is L-Lipschitz continuous and η-strongly
monotone. But if the strong monotonicity is relaxed to plain monotonicity then the projected
gradient method may diverge (see [24] for counter example).

To avoid the assumption of strong monotonicity, Korpelevich [16] proposed the extragradient
method:{

yk = PC = (xk −αk f (xk))
xk+1 = PC(xk −αk f (yk))

for each k ≥ 1, which converges if f is Lipschitz and monotone, where αk ∈
(
0, 1

L
)

and L is the
Lipschitz constant of f , or αk is updated by the following adaptive procedure as:

αk‖ f (xk)− f (yk)‖ ≤µ‖xk − yk‖, (1.2)

where µ ∈ (0,1).
The extragradient method has received a considerable attention and many authors modified

and improved it in various ways; there is one famous extension of He [12] and Sun [22], called
the projection and contraction method.
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Algorithm 1.1 (The projection and contraction method).{
yk = PC(xk −αk f (xk))
xk+1 = PC(xk −γρkαk f (yk))

where γ ∈ (0,2), αk ∈
(
0, 1

L
)

or {αk}∞k=0 is selected self-adaptively, and

ρk =
‖xk − yk‖2 −αk〈xk − yk, ( f (xk), f (yk))〉

‖(xk − yk)−αk( f (xk)− f (yk))‖2 .

The choice of the stepsize is very important since the performance of the iteration methods
heavily depends on it. We can easily noticed that in the classical extragradient method, the
stepsize αk is same in both projections but in Projection and contraction method, stepsizes are
different in both projections. The numerical example proved shows that the computational load
of Extragradient method is about double of that projection and contraction method.

In fact, it is seen that, in the extragradient method one needs to calculate two orthogonal
projections onto C in each iteration, where projection onto a closed, convex set C is related to a
minimum distance problem.

To overcome this obstacle, Censor et al. in [3] introduced the subgradient extragradient
method in which the second projection onto the C is replaced by a specific subgradient
extragradient projection which can be easily calculated.

Algorithm 1.2 (The subgradient extragradient method).{
yk = PC(xk −αk f (xk))
xk+1 = PTk (xk −αk f (yk))

where Tk is the set defined as

Tk := {w ∈ H : 〈(xk −αk f (xk))− yk,w− yk〉 ≤ 0},

and αk ∈
(
0, 1

L
)

or {αk}∞k=0 is selected self-adaptively, that is, αk =σρmk , α> 0, ρ ∈ (0,1) and mk

is the smallest non-negative integer such that

αk‖ f (xk − f (yk))‖ ≤µ‖xk − yk‖, µ ∈ (0,1). (1.3)

Since the inception of the subgradient extragradient method, many authors have proposed
various modifications. So, the stepsizes used in extragradient and subgradient extragradient
methods has an essential role in the convergence rate of the two step methods, hence to modify
the stepsize in the second step of the subgradient extragradient method in the sense of He [12]
and Sun [22], Dong et al. [4] introduced a modified subgradient extragradient method which
improves the step size in the second step of the subgradient extragradient method.

Algorithm 1.3 (The modified subgradient extragradient method).
Step 0: Select a starting point x0 ∈ H and set k = 0.

Step 1: Given the current iterate xk, compute

αk‖ f (xk)− f (yk)‖ ≤µ‖xk − yk‖, µ ∈ (0,1). (1.4)

Step 2: Construct the set

Tk := {w ∈ H : 〈(xk −αk f (xk))− yk,w− yk〉 ≤ 0}, (1.5)
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xk+1 = PTk (xk −γρkαk f (yk)), (1.6)

where γ ∈ (0,2) and

ρk := 〈(xk − yk,d(xk), yk)〉
‖d(xk, yk)‖2 , (1.7)

where

d(xk, yk)= (xk − yk)−αk( f (xk)− f (yk)). (1.8)

Set k ← k+1 and return to Step 1.

Question. Is it possible to obtain the solution of Variational Inequality (VI) with the help of
less number of iterations, less number of total iteration to find suitable αk , and within shortest
time, in the spirit of Dong et al. [4].

In this paper, we provide an affirmative answer to this question by relying on the
work of [4] and introduce a modified subgradient extragradient method with inertial effects.
The convergence of the proposed method is proved under standard assumptions and numerical
experiment validates its applicability.

The next sections are arranged as follows: In Section 2, we recalled some basic notions
and results which will use in sequel. In Section 3, we presented and analyzed an inertial
modified subgradient extragradient method. In Section 4, we give numerical analysis to
illustrate the efficiency and advantage of the inertial modified subgradient extragradient
method and compared the performance of our proposed method with other methods numerically
and graphically. In Section 5, we have added concluding remarks.

2. Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and the induced norm ‖ ·‖ and let D be
nonempty, closed and convex subset of H. For given a sequence {xk} with subsequence {xk j }, we
will use the following notations in sequel:

(1) * for weak convergence and → for strong convergence;

(2) ωw(xk)= {x : ∃ xk j* x} denoted the weak ω-limit set of {xk}.

For real Hilbert space H with inner product 〈·〉 and the induced norm ‖ · ‖, and let D be a
nonempty, closed and convex subset of H. We need some results and tools which are listed below.
Recall that, in a Hilbert space H,

‖ηx+ (1−η)y‖2 = η‖x‖2 + (1−η)‖y‖2 −η(1−η)‖x− y‖2, (2.1)

for all x, y ∈ H and η ∈R (see in Corollary [1]). Corollary number missing
For each point x ∈ H, there exists a unique nearest point in D, denoted by PD(x), i.e.,

‖x−PD(x)‖ ≤ ‖x− y‖.

Definition 2.1. Let B : H ⇒ 2H be a point to set operator defined on a real Hilbert space H.
B is caller a maximal monotone operator if B is monotone, i.e.,

〈u−v, x− y〉 ≥ 0,
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for all u ∈ B(x) and v ∈ B(y) and the graph G(B) of B,

G(B) := {(x,u) ∈ H×H : u ∈ B(x)},

is not properly contained in the graph of any other monotone operator.

It is obvious that a monotone mapping B is maximal if and only if, for any (x,u) ∈ H ×H, if
〈u−v, x− y〉 ≥ 0 for all (v, y) ∈G(B), then it follows that u ∈ B(x).

Definition 2.2. The normal cone of D at v ∈ D, denoted by ND(v), is defined as

ND(v) := {d ∈ H : 〈d, y−v〉}≤ 0,

for all y ∈ D.

Lemma 2.1 ([8]). Let x ∈ H and z ∈ D. Then, z = PD(x) if and only if

PD(x) ∈ D (2.2)

and

〈x−PD(x),PD(x)− y〉 ≥ 0, for all x ∈ H, y ∈ D. (2.3)

Lemma 2.2 ([8]). For any x, y ∈ H and z ∈ D, it holds:

1. ‖PD(x)−PD(y)‖ ≤ ‖x− y‖;

2. ‖PD(x)− z‖ ≤ ‖x− z‖2 −‖PD(x)− x‖2.

Lemma 2.3 ([1]). Let C be a non empty set of H and {xk} be a sequence in H such that the
following two conditions hold:

(i) for all x ∈ C, lim
k→∞

‖xk − x‖ exists;

(ii) every sequential weak cluster point of {xk} is in C.

Then, the sequence {xk} converges weakly to a point in C.

3. Main Results
In this section, we present the inertial modified subgradient extragradient algorithm and
examine its convergence. Consider the mapping f : H → H, we introduce the following algorithm:

Algorithm 3.1 (The modified subgradient extragradient method with inertial effects). Take σ>
0, ρ > 0 and µ ∈ (0,1).

Step 0: Choose initial guesses x0, x1 ∈ H arbitrarily.
Calculate the (k+1)th iterate xk+1 via the formula:

Step 1: Under current iterate, compute wk

wk = xk +αk(xk − xk−1). (3.1)

Step 2: Calculate

yk = PC(wk −αkF(wk)), (3.2)

αk‖F(wk)−F(yk)‖ ≤µ‖wk − yk‖, (3.3)
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Step 3: Construct the set

Tk := {u ∈ H : 〈(wk −αkF(wk))− yk,u− yk〉 ≤ 0}, (3.4)

xk+1 = PTk (wk −γρkαkF(yk)) (3.5)

for each k ≥ 1, where µ,ρ ∈ (0,1), σ> 0 and γ ∈ (0,2) and

ρk := 〈wk − yk,d(wk, yk)〉
‖d(wk, yk)‖2 , (3.6)

with

d(wk, yk)= (wk − yk)−αk(F(wk)−F(yk)), (3.7)

and {αk} is selected self adaptive, that is, αk = σρmk , α > 0, and mk is the smallest
non-negative integer which satisfies inequality with k ≥ 1.

If yk = wk or d(wk, yk) = 0 then xk+1 is the solution of the variational inequality (1.1) and
iterative process stops; otherwise we will continue and obtain the next iterate xk+2 from our
defined Algorithm 3.1.

3.1 Convergence Analysis
In this subsection, we will examine the convergence of our defined Algorithm 3.1. We establish
a sequence {wk} which is obtained by Algorithm 3.1, is weakly convergent to the solution
of variational inequality (1.1). We construct the weak convergence theorem and its proof for
inertial modified subgradient extragradient Algorithm 3.1.

To discuss the convergence of the Algorithm 3.1, suppose that following conditions hold:

Condition 3.1.1. The solution set of (1.1), denoted by SOL(C, f ), is nonempty.

Condition 3.1.2. The mapping f is monotone on H, i.e.,

〈 f (x)− f (y), x− y〉 ≥ 0,

for all x, y ∈ H.

Condition 3.1.3. The mapping f is Lipschitz continuous on H with Lipscchitz constant L > 0,
i.e.,

‖ f (x)− f (y)‖ ≤ L‖x− y‖,

for all x, y ∈ H.

Consider the following assumptions on our {αk}:

Condition 3.1.4. 0≤αk ≤α.

Condition 3.1.5.
+∞∑
k=1

αk‖xk − xk−1‖2 <+∞.

Condition 3.1.6. lim
k→∞

αk‖xk − yk‖ = 0.
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Lemma 3.1 ([5]). Let K be closed, convex subset of real Hilbert space H and PK be the (metric
or nearest point) projection from H onto K (that is, for x ∈ H, PK x is the only point in K such
that ‖x−PK x‖ = inf{‖x− z‖ : z ∈ K}). Then, for any x ∈ H and z ∈ K , z = PK x if and only if there
holds the relation:

〈x− z, y− z〉 ≤ 0,

for all y ∈ K .

Lemma 3.2 ([4]). Let {ρk} be a sequence defined by (3.17) in our algorithm. Then, under
Condition 3.1.2 and 3.1.3, we have

ρk ≥
1−µ
1+µ2 .

Lemma 3.3. Suppose that 0 < αk ≤ α < 1
L . Let yk = wk or d(wk, yk) = 0 in algorithm, then

xk+1 ∈SOL(C, f ).

Proof. From Conditions 3.1.3 and Algorithm 3.1, it follows

‖d(wk, yk)‖ = ‖(wk − yk)−αk( f (wk)− f (yk))‖
≥ ‖wk − yk‖−αk‖ f (wk)− f (yk)‖
≥ (1−αkL)‖wk − yk‖.

Similarly, we can show that

‖d(wk, yk)‖ ≤ (1+αkL)‖wk − yk‖.

So, d(wk, yk)= 0 if and only if yk = wk. From our defined algorithm, we have

yk = PC(yk −αk f (yk)).

When d(wk, yk)= 0 then one can obtain that ρk = 0, and

PTk (yk −0)= yk,

and so xk+1 = yk, where

yk = PC(yk −αk f (yk),

which with Lemma 2.2, yields that xk+1 ∈SOL(C, f ). Hence completes the proof.

In above lemma, we see that if our defined algorithm terminates in a finite step of iterations,
then xk is the solution of the variational inequality (1.1). So, in the rest of this section, we
assume that our algorithm does not terminate in any finite iterations, and generates an infinite
sequence.

Lemma 3.4. Let {xk}∞0 be a sequence generated by our algorithm and let u ∈ SOL(C, f ). Then,
under Condition 3.1.1, 3.1.2 and 3.1.3, we have the following:

‖xk+1 −u‖2 ≤ ‖wk −u‖2 −‖(wk − xk+1)−γρkd(wk, yk)‖2 −γ(2−γ)ρ2
k‖d(wk, yk)‖2.

Proof. By definition of xk+1 and by Lemma 2.1, we have

‖xk+1 −u‖2 ≤ ‖wk −γρkαk f (yk)−u‖2 −‖wkγρkαk f (yk)− xk+1‖2

= ‖wk −u‖2 −‖xk+1 −wk‖2 −2γρkαk〈xk+1 −u, f (yk)〉.
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Since, u ∈SOL(C, f ) and f is monotone, we have

〈 f (yk)− f (u), yk −u〉 ≥ 0,

which with (1.1) implies

〈 f (yk), yk −u〉 ≥ 0,

for all k ≥ 0. So,

〈 f (yk), xk+1 −u〉 ≥ 〈 f (yk), xk+1 − yk〉.
By the definition of Tk and xk+1 ∈ Tk, we have

〈(wk)−αk f (wk)− yk, xk+1 − yk〉 ≤ 0,

which implies

〈d(wk, yk), xk+1 − yk〉 ≤αk〈 f (yk), xk+1 − yk〉.
Using above two inequalities, we get

−2γρkαk〈xk+1 −u, f (yk)〉 ≤−2γρk〈xk+1 − yk,d(wk, yk)〉
=−2γρk〈wk − yk,d(wk, yk)〉+2γρk〈wk − xk+1,d(wk, yk)〉
=−2γρ2

k‖d(wk, yk)‖2 +2γρk〈wk − xk+1,d(wk, yk)〉
=−2γρ2

k‖d(wk, yk)‖2 −‖(wk − xk+1)−γρkd(wk, yk)‖2

+‖wk − xk+1‖2 +γ2ρ2
k‖d(wk, yk)‖2.

By putting this value in the first inequality of proof, we get as

‖xk+1 −u‖2 ≤ ‖wk −u‖2 −‖(wk − xk+1)−γρkd(wk, yk)‖2 −γ(2−γ)ρ2
k‖d(wk, yk)‖2.

Theorem 3.1. Assume the Condition 3.1.1-3.1.6 hold. Then, the sequence {xk} generated by
Algorithm 3.1 converges weakly to a solution of the variational inequality problem (1.1).

Proof. Fix u ∈SOL(C, f ). Applying (2.1), we have

‖wk −u‖2 = ‖xk +αk(xk − xk−1)−u‖2

= ‖xk +αk(xk − xk−1)+αku−αku−u‖2

= ‖(1+αk)(xk −u)−αk(xk−1 −u)‖2

= (1+αk)‖xk −u‖2 −αk‖xk−1 −u‖2 +αk(1+αk)‖xk − xk−1‖2 . (3.8)

Hence, from Lemma 3.4 and (3.8), it follows that,

‖xk+1 −u‖2 ≤ ‖wk −u‖2 −‖(wk − xk+1)−γρkd(wk, yk)‖2 − γ(2−γ)(1−µ)2

1+µ2 ‖wk − yk‖2

= [(1+αk)‖xk −u‖2 −αk‖xk−1 −u‖2 +αk(1+αk)‖xk − xk−1‖2]

−‖(wk − xk+1)−γρkd(wk, yk)‖2 − γ(2−γ)(1−µ)2

1+µ2 ‖wk − yk‖2

≤ [(1+αk)‖xk −u‖2 −αk‖xk−1 −u‖2 +αk(1+αk)‖xk − xk−1‖2]−‖xk+1 −wk‖2 .

Hence, we can write as

‖xk+1 −u‖2 − (1+αk)‖xk −u‖2 +αk‖xk−1 −u‖2 ≤αk(1+αk)‖xk − xk−1‖2 −‖xk+1 −wk‖2 . (3.9)
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Now, we have to calculate the value of ‖xk+1 −wk‖2, as follows:

‖xk+1 −wk‖2 = ‖(xk+1 − xk)−αk(xk − xk−1)‖2

= ‖xk+1 − xk‖2 +αk‖xk − xk−1‖2 −2αk〈xk+1 − xk, xk − xk−1〉
≤ ‖(xk+1 − xk‖2 +αk‖xk − xk−1‖2 . (3.10)

Put this value (3.10) in (3.9), we get

‖xk+1 −u‖2 − (1+αk)‖xk −u‖2 +αk‖xk−1 −u‖2 ≤αk‖xk − xk−1‖2 −‖xk+1 − xk‖2 . (3.11)

This implies that

‖xk+1 −u‖2 ≤ (1+αk)‖xk −u‖2 −αk‖xk−1 −u‖2 +αk‖xk − xk−1‖2 −‖xk+1 − xk‖2

≤ (1+αk)‖xk −u‖2 +αk‖xk − xk−1‖2 . (3.12)

Since by Condition 3.1.6, we may say, lim
k→∞

‖xk+1−u‖2 ≤ lim
k→∞

(1+αk)‖xk−u‖2 which implies that

the sequence {xk+1−u} is decreasing sequence and bounded below thus converges to some finite
limit. Also, {xk} is Fejer Monotone with respect to SOL(C, f ) and thus is bounded, so it seems
the existence of lim

k→∞
‖xk −u‖2, it follows that

∞∑
k=0

‖xk − yk‖2 ≤+∞ (3.13)

which implies lim
n→∞‖xk − yk‖ = 0. Then by (3.12), we can say

lim
k→∞

‖xk+1 − xk‖ ≤ lim
k→∞

‖xk+1 − yk‖+ lim
k→∞

‖yk − xk‖
≤ lim

k→∞
(1+αk)‖xk − yk‖

= 0, (3.14)
lim
k→∞

‖xk+1 −wk‖ ≤ lim
k→∞

‖xk+1 − xk‖+αk lim
k→∞

‖xk − xk−1‖
≤ lim

k→∞
‖xk+1 − xk‖+α lim

k→∞
‖xk − xk−1‖

= 0, (3.15)
lim
k→∞

‖wk − yk‖ = lim
k→∞

‖xk +αk(xk − xk−1)− yk‖2

= lim
k→∞

[‖xk − yk‖2 +α2
k‖xk − xk−1‖2 +2αk〈xk − yk, xk − xk−1〉]

= 0 . (3.16)

Now, we are to show that ωw(xk)⊂SOL(C, f ). Due to the boundedness of {xk} it has atleast one
weak cluster point. Let x∗ ∈ωw(xk) then there exists a subsequence {xki } of {xk} which converges
weakly to x∗. Also, it follows that {wki } and {yki } converges weakly to x∗.
Finally, we show that, x∗ is the solution of variational inequality (1.1). Let

Av =
{

f (v)+NC(v) v ∈ C
φ otherwise,

(3.17)

where NC(v) is normal cone of C at v ∈ C, that is,

NC(v) := {d ∈ H : 〈d, y−v〉 ≤ 0, ∀ y ∈ C}.

It is known that A is maximal monotone operator and A−1(0)= SOL(C, f ). If (v,w) ∈G(A), then
we have w− f (v) ∈ NC(v) since w ∈ A(v)= f (v)+NC(v).

Communications in Mathematics and Applications, Vol. 10, No. 2, pp. 267–280, 2019



276 A Modified Subgradient Extragradient Algorithm With Inertial Effects: S. Komal and P. Kumam

Thus, it follows that

〈w− f (v),v− y〉 ≥ 0 (3.18)

for all y ∈ C. Since yki ∈ C, we have

〈w− f (v),v− yki〉 ≥ 0.

On the other hand, by definition of yk and Lemma 3.3, it follows that

〈wk −αk f (wk)− yk, yk −v〉 ≥ 0

and, consequently,
〈 yk−wk

αk
+ f (wk),v− yk

〉≥ 0. Hence, we have

〈w,v− yki〉 ≥ 〈 f (v),v− yki〉
≥ 〈 f (v),v− yki〉−

〈 yki −wki

αki

+ f (wki ),v− yki

〉
= 〈 f (v)− f (yki ),v− yk〉+〈 f (yki − f (wki )),v− yki〉−

〈 yki −wki

αki

,v− yki

〉
≥ 〈 f (yki )− f (wki ),v− yki〉−

〈 yki −wki

αki

,v− yki

〉
, (3.19)

which implies 〈w,v− yki〉 ≥ 〈 f (yki )− f (wki ),v− yki〉−
〈 yki−wki

αki
,v− yki

〉
. Taking a limit as i →∞

in the above inequality, we obtain

〈w,v− x∗〉.
Since A is maximal monotone operator, it follows that x∗ ∈ A−1(0)=SOL(C, f ). This complete
the proof.

By considering xk = xk−1, in our defined Algorithm 3.1, then Algorithm 3.1 converts into
Algorithm 1.3, then we get Theorem 3.1 of [4] as a corollary, as follows:

Corollary 3.1. Assume the Condition 3.1.1-3.1.3 hold. Then, the sequence {xk} generated by
Algorithm 1.3 converges weakly to a solution of the variational inequality problem (1.1).

Proof. By putting xk = xk−1 in our Algorithm 3.1, we obtain desired result.

4. Numerical Experiments
In this section, we evaluate the performance of proposed Algorithm 3.1, and present a numerical
example relative to the variational inequality. We compare an inertial modified subgradient
extragradient method Algorithm 3.1 with Algorithm 1.1 (The projection and contraction method),
Algorithm 1.2 (The subgradient extragradient method) and Algorithm 1.3 (The modified
subgradient extragradient method).

Consider the linear operator Fx := Ax+b, which is taken from [4] and has been considered
by many authors for numerical experiments, where

A = BBT +C+D,

and B is an n×n matrix, C is an n×n skew-symmetric matrix, D is an n×n diagonal matrix,
whose diagonal entries are non-negative (so A is positive semi-definite), and b is a vector in Rn.
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The feasible set N ⊂Rn is closed and convex and defined as

N := {x ∈Rn |Qx ≤ p},

where Q is l × n matrix and p is a non-negative vector. It is clear that F is monotone and
L-Lipschitz continuous with L = ‖A‖ (hence uniformly continuous). For b = 0, the solution
set SOL(N,F) = {0}. Just as in [4], we randomly choose the starting points x0, x1 ∈ [0,1]n in
Algorithm 1.1, Algorithm 1.2, Algorithm 1.3 and in Algorithm 3.1. We choose the stopping
criterion as ‖xk‖ ≤ ε= 0.005 and the parameters σ= 0.01, ρ = 0.4, µ= 0.85, and γ= 1.99. The
size l = 100 and n = 5,10,20,30,40,50,60,70 and 80. The matrix B, C, D and the vector p are
generated randomly.

In Table 1, we denoted ‘the number of iterations’ with ‘Iter.’ and ‘the number of total
iterations of finding suitable αk ’ with ‘Intl.’ and we can easily examine that our defined
algorithm (Algorithm 3.1 is highly efficient with respect to the number of iterations, the
number of total iterations of finding suitable αk and the CPU time comparatively Algorithm 1.1,
Algorithm 1.2 and Algorithm 1.3. The given Table 1 shows that Algorithm 3.1 is more efficient
than Algorithm 1.1, Algorithm 1.2 and Algorithm 1.3 with respect to iter., intl. and CPU time.
Also, in the concluding remarks we can see the graph with error comparison of Algorithm 1.1,
Algorithm 1.2, Algorithm 1.3 and Algorithm 3.1 respectively, from where we can easily see the
efficiency of our defined algorithm with least error.

Table 1. Convergence comparison of Algorithms 1.1, 1.2, 1.3 and 3.1

Iter. Inlt. CPU in seconds
n Alg. 1.1 Alg. 1.2 Alg. 1.3 Alg. 3.1 Alg. 1.1 Alg. 1.2 Alg. 1.3 Alg. 3.1 Alg. 1.1 Alg. 1.2 Alg. 1.3 Alg. 3.1

5 529 1893 216 1 529 1893 216 1 0.9219 0.7656 0.7656 0
10 267 841 369 1 267 841 369 1 1.375 2.125 0.7344 0
20 303 656 522 2 334 667 824 4 1.5313 0.8906 2.3906 0
30 467 1457 555 2 858 2940 1030 6 2.7344 1.4375 1.6563 0.0469
40 647 2895 917 2 1545 8531 2452 6 7.5938 43.8906 3.6875 0.0781
50 1374 5747 1649 2 4190 22321 5052 8 7.8906 66.5313 3.0156 0.0313
60 2187 7933 1971 2 7610 31732 6983 8 10.0781 79.3906 5.5313 0.0313
70 2201 8387 1567 2 8178 32992 6073 8 7.4844 151.2344 61.9219 0.0469
80 3334 7729 5321 2 13575 31907 26356 10 11.8594 11.2656 27.2813 0.0313

Figure 1. Algorithm 1.1
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Figure 2. Algorithm 1.2

Figure 3. Algorithm 1.3

Figure 4. Algorithm 3.1

5. Concluding Remarks
In this manuscript, we presented a modified subgradiient extragradient method with inertial
effects to solve the Variational Inequalities (VI) by incorporating the inertial terms in the
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modified subgradient extragradient method. The convergence result for Algorithm 3.1 presented
under some standard assumptions. Also, the numerical results confirm the effectiveness of our
proposed method.
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