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1. Introduction
Throughout the paper unless otherwise stated, let H1 and H2 be real Hilbert spaces with the
inner product 〈·, ·〉 and the norm ‖ ·‖. Let C be a nonempty subset of H1 and let F1 : C×C →R
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be a bifunction. We study the equilibrium problem which introduced by Blum and Oettli [6] in
1994. The equilibrium problem is to find a point x̂ ∈ C such that

F1(x̂, y)≥ 0 (1.1)

for all y ∈ C. We know that the equilibrium problem (1.1) has received much attention due
to its applications in a large variety of problems arising in numerous problems in physics,
optimizations and economics. Some methods have been rapidly established for solving this
problem (see [11,14,35,45]).

Very recently, Kazmi and Rizvi [23] introduced and studied the following split equilibrium
problem:

Let Q be a nonempty subset of H2 and F2 : Q×Q →R be a bifunction. Let A : H1 → H2 be a
bounded linear operator. The split equilibrium problem is to find x̂ ∈ C such that

F1(x̂, x)≥ 0 for all x ∈ C (1.2)

and such that

ŷ= Ax̂ ∈Q solves F2( ŷ, y)≥ 0 for all y ∈Q. (1.3)

Note that the problem (1.2) is the classical equilibrium problem and we denote its solution
set by EP(F1). The inequalities (1.2) and (1.3) constitute a pair of equilibrium problems which
have to find the image ŷ= Ax̂, under a given bounded linear operator A, of the solution x̂ of (1.2)
in H1 is the solution of (1.3) in H2. We denote the solution set of (1.3) by EP(F2). The solution
set of the split equilibrium problem (1.2) and (1.3) is denoted by Ω= {z ∈EP(F1) : Az ∈EP(F2)}.

In the recent years, the problem of finding a common element of the set of solution of
split equilibriums and the set of fixed points for a mapping in the framework of Hilbert
spaces and Banach spaces have been intensively studied by many authors, for instance, (see
[18,21,23,41,43,49,50]) and the references cited therein.

Moreover, we study the following inclusion problem: find x̂ ∈ H1 such that

0 ∈ Ax̂+Bx̂ , (1.4)

where A : H1 → H1 is an operator and B : H1 → 2H1 is a set-valued operator. We denote
the solution set of (1.4) by (A +B)−1(0). This problem has received much attention due to
its applications in large variety of problems arising in convex programming, variational
inequalities, split feasibility problem and minimization problem. To be more precise, some
concrete problems in machine learning, image processing and linear inverse problem can be
modeled mathematically as this formulation.

For solving the problem (1.4), the forward-backward splitting method [4,12,13,25,26,33,48]
is usually employed and is defined by the following manner: x1 ∈ H1 and

xn+1 = (I + rB)−1(xn − rAxn), n ≥ 1, (1.5)

where r > 0. In this case, each step of iterates involves only with A as the forward step and B
as the backward step, but not the sum of operators. This method includes, as special cases, the
proximal point algorithm [39] and the gradient method. In [24], Lions and Mercier introduced
the following splitting iterative methods in a real Hilbert space:

xn+1 = (2JA
r − I)(2JB

r − I)xn, n ≥ 1 (1.6)

and

xn+1 = JA
r (2JB

r − I)xn + (I − JB
r )xn, n ≥ 1, (1.7)
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where JT
r = (I+rT)−1 with r > 0. The first one is often called Peaceman-Rachford algorithm [34]

and the second one is called Douglas-Rachford algorithm [20]. We note that both algorithms are
weakly convergent in general [5,24].

Many problems can be formulated as a problem of from (1.4). For instance, a stationary
solution to the initial valued problem of the evolution equation

0 ∈ ∂u
∂t

−Fu, u(0)= u0 (1.8)

can be recast as (1.4) when the governing maximal monotone F is of the form F = A+B (see
[24]). In optimization, it often needs (see [13]) to solve a minimization problem of the form

min
x∈H1

f (x)+ g(x) (1.9)

where f , g are proper and lower semicontinuous convex functions from H1 to the extended real
line R̄= (−∞,∞] such that f is differentiable with L-Lipschitz continuous gradient, and the
proximal mapping of g is

x 7→ argmin
y∈H1

g(y)+ ‖x− y‖2

2r
. (1.10)

In particular, if A := ∇ f and B := ∂g, where ∇ f is the gradient of f and ∂g is the
subdifferential of g which is defined by ∂g(x) := {s ∈ H1 : g(y) ≥ g(x)+ 〈s, y− x〉, ∀ y ∈ H1}
then problem (1.4) becomes (1.9) and (1.5) also becomes

xn+1 = proxrg(xn − r∇ f (xn)),n ≥ 1, (1.11)

where r > 0 is the stepsize and proxrg = (I + r∂g)−1 is the proximity operator of g.
In 2001, Alvarez and Attouch [2] employed the heavy ball method which was studied in

[37, 38] for maximal monotone operators by the proximal point algorithm. This algorithm is
called the inertial proximal point algorithm and it is of the following form:{

yn = xn +θn(xn − xn−1)
xn+1 = (I + rnB)−1 yn, n ≥ 1.

(1.12)

It was proved that if {rn} is non-decreasing and {θn}⊂ [0,1) with
∞∑

n=1
θn‖xn − xn−1‖2 <∞, (1.13)

then algorithm (1.12) converges weakly to a zero of B. In particular, condition (1.13) is true
for θn < 1/3. Here θn is an extrapolation factor and the inertia is represented by the term
θn(xn − xn−1). It is remarkable that the inertial terminology greatly improves the performance
of the algorithm and has a nice convergence properties [1,17,19,31].

Recently, Moudafi and Oliny [29] proposed the following inertial proximal point algorithm
for solving the zero-finding problem of the sum of two monotone operators:{

yn = xn +θn(xn − xn−1)
xn+1 = (I + rnB)−1(yn − rn Axn), n ≥ 1,

(1.14)

where A : H1 → H1 and B : H1 → 2H1 . They obtained the weak convergence theorem provided
rn < 2/L with L the Lipschitz constant of A and the condition (1.13) holds. It is observed that,
for θn > 0, the algorithm (1.14) does not take the form of a forward-backward splitting algorithm,
since operator A is still evaluated at the point xn.
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Recently, Lorenz and Pock [26] proposed the following inertial forward-backward algorithm
for monotone operators:{

yn = xn +θn(xn − xn−1)
xn+1 = (I + rnB)−1(yn − rn A yn), n ≥ 1,

(1.15)

where {rn} is a positive real sequence. It is observed that algorithm (1.15) differs from that
of Moudafi and Oliny insofar that they evaluated the operator B as the inertial extrapolate
yn. The algorithms involving the inertial term mentioned above have weak convergence, and
however, in some applied disciplines, the norm convergence is more desirable that the weak
convergence [5].

For solving the fixed point problem of a nonlinear mapping T , the Noor iteration (see [32]) is
defined by x1 ∈ H and

yn = γnxn + (1−γn)Txn

zn =βnxn + (1−βn)T yn

xn+1 =αnxn + (1−αn)Tzn,
(1.16)

for all n ≥ 1, where {αn}, {βn}, {γn} are sequences in [0,1]. The iterative process (1.16) is
generalized form of the Mann (one-step) iterative process by Mann [27] and the Ishikawa (two-
step) iterative process by Ishikawa [22]. Phuengrattana and Suantai [36], in 2011, introduced
the new process by using the concept of the Noor iteration and it is called the SP-iteration.
These iteration is generated by x1 ∈ H and

yn = γnxn + (1−γn)Txn

zn =βn yn + (1−βn)T yn

xn+1 =αnzn + (1−αn)Tzn

(1.17)

for all n ≥ 1, where {αn}, {βn}, {γn} are sequences in [0,1]. They compared the convergence speed
of Mann, Ishikawa, Noor and SP-iteration and obtained the SP-iteration converges faster than
the others for the class of continuous and nondecreasing functions. However, the Noor iteration
and the SP-iteration have only weak convergence even in a Hilbert space.

In this work, we introduce a new combining the SP-iteration with the inertial technical
term for approximating common elements of the set of solutions of split equilibrium problems
and the set of solutions of inclusion problems. We prove some weak convergence theorems of
the sequences generated by our iterative process under appropriate additional assumptions in
Hilbert spaces. We aim to introduce an algorithm that ensures the strong convergence. To this
end, using the idea of Takahashi et al. [47], we employ the following projection method which is
defined by: For C1 = C, x1 = PC1 x0 and

yn =αnxn + (1−αn)Txn,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1 x0, ∀n ∈N,

(1.18)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. It was proved that the sequence {xn} generated by (1.18)
converges strongly to a fixed point of a nonexpansive mapping T . This method is usually called
the shrinking projection method (see also Nakajo and Takahashi [30]). Further, we apply our
main result to find the common elements of the set of solutions of split feasibility problems and
variational inequality problems and also find the common elements of the set of solutions of
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split feasibility problems and the minimization problems. Finally, we show numerically that our
proposed scheme converges faster than the algorithm without the inertial technical term.

2. Preliminaries and Lemmas
Let C be a nonempty, closed and convex subset of a Hilbert space H1. We write xn * x to
indicate that the sequence {xn} converges weakly to x and xn → x implies that {xn} converges
strongly to x. A mapping T : C → C is said to be nonexpansive if ‖Tx−T y‖ ≤ ‖x− y‖ for all
x, y ∈ C. An element p ∈ C is called a fixed point of a mapping T : C → C if p = T p. The fixed
point set of T is denoted by F(T). If F(T) 6= ; and ‖Tx− p‖ ≤ ‖x− p‖ for all x ∈ C and p ∈ F(T),
then T is said to be quasi-nonexpansive. The nearest point projection of H1 onto C is denoted by
PC , that is, ‖x−PCx‖ ≤ ‖x− y‖ for all x ∈ H1 and y ∈ C. Such PC is called the metric projection
of H1 onto C. We know that the metric projection PC is firmly nonexpansive, i.e.,

‖PCx−PC y‖2 ≤ 〈PCx−PC y, x− y〉
for all x, y ∈ H1. Furthermore, 〈x−PCx, y−PCx〉 ≤ 0 holds for all x ∈ H1 and y ∈ C (see [46]).

Lemma 2.1 ([46]). Let H1 be a real Hilbert space. Then the following equations hold:
(1) ‖x− y‖2 = ‖x‖2 −‖y‖2 −2〈x− y, y〉 for all x, y ∈ H1;
(2) ‖x+ y‖2 ≤ ‖x‖2 +2〈y, x+ y〉 for all x, y ∈ H1;
(3) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2 for all t ∈ [0,1] and x, y ∈ H1.

It is well know that every nonexpansive operator T : H1 → H1 satisfies, for all (x, y) ∈ H1×H1,
the inequality

〈(x−T(x))− (y−T(y)),T(y)−T(x)〉 ≥ 1
2
‖(T(x)− x)− (T(y)− y)‖2

and therefore we get, for all (x, y) ∈ H1 ×F(T),

〈(x−T(x)), (y−T(y)),〉 ≥ 1
2
‖T(x)− x‖2 .

(see, e.g, [15,16]).

Assumption 2.2 ([6]). Let F1 : C×C →R be a bifunction satisfying the following assumptions:
(1) F1(x, x)= 0 for all x ∈ C;
(2) F1 is monotone, i.e., F1(x, y)+F1(y, x)≤ 0 for all x ∈ C;
(3) For each x, y, z ∈ C, limsup

t→0
F1(tz+ (1− t)x, y)≤ F1(x, y);

(4) For each x ∈ C, y→ F1(x, y) is convex and lower semi-continuous.

Lemma 2.3 ([14]). Let F1 : C×C →R be a bifunction satisfying Assumption 2.2. For any r > 0
and x ∈ H1, define a mapping TF1

r : H1 → C as follows:

TF1
r (x)=

{
z ∈ C : F1(z, y)+ 1

r
〈y− z, z− x〉 ≥ 0, ∀y ∈ C

}
.

Then, we have the following:
(1) TF1

r is nonempty and single-value;
(2) TF1

r is firmly nonexpansive;
(3) F(TF1

r )=EP(F1);
(4) EP(F1) is closed and convex.
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Further, assume that F2 : Q×Q →R satisfying Assumption 2.2. For each s > 0 and w ∈ H2, define
a mapping TF2

s : H2 →Q as follows:

TF2
s (w)=

{
d ∈Q : F2(d, e)+ 1

s
〈e−d,d−w〉 ≥ 0, ∀ e ∈Q

}
.

Then, we have the following:
(5) TF2

s is nonempty and single-value;
(6) TF2

s is firmly nonexpansive;
(7) F(TF2

s )=EP(F2,Q);
(8) EP(F2,Q) is closed and convex.

Lemma 2.4 ([28]). Let C be a nonempty closed and convex subset of a real Hilbert space H1. For
each x, y ∈ H1 and a ∈R, the set

D = {v ∈ C : ‖y−v‖2 ≤ ‖x−v‖2 +〈z,v〉+a}

is closed and convex.

In what follows, we shall use the following notation:

T A,B
r = JB

r (I − rA)= (I + rB)−1(I − rA), r > 0. (2.1)

Lemma 2.5 ([25]). Let X be a Banach space. Let A : X → X be an α-inverse strongly accretive of
order q and B : X → 2X an m-accretive operator. Then we have

(i) For r > 0, F(T A,B
r )= (A+B)−1(0).

(ii) For 0< s ≤ r and x ∈ X , ‖x−T A,B
s x‖ ≤ 2‖x−T A,B

r x‖.

Lemma 2.6 ([25]). Let X be a uniformly convex and q-uniformly smooth Banach space for some
q ∈ (0,2]. Assume that A is a single-valued α-inverse strongly accretive of order q in X . Then,
given r > 0, there exists a continuous, strictly increasing and convex function φq :R+ →R+ with
φq(0)= 0 such that, for all x, y ∈ Br ,

‖T A,B
r x−T A,B

r y‖q ≤ ‖x− y‖q − r(αq− rq−1kq)‖Ax− A y‖q

−φq(‖(I − JB
r )(I − rA)x− (I − JB

r )(I − rA)y‖),

where kq is the q-uniform smoothness coefficient of X .

Lemma 2.7 ([2]). Let {ψn}, {δn} and {αn} be the sequences in [0,+∞) such that ψn+1 ≤
ψn +αn(ψn −ψn−1)+ δn for all n ≥ 1,

∞∑
n=1

δn < +∞ and there exists a real number α with

0≤αn ≤α< 1 for all n ≥ 1. Then the followings hold:
(i) Σn≥1[ψn −ψn−1]+ <+∞, where [t]+ =max{t,0};

(ii) there exists ψ∗ ∈ [0,+∞) such that lim
n→+∞ψn =ψ∗.

Lemma 2.8 ([7]). Let C be a nonempty closed convex subset of a uniformly convex space X and
T a nonexpansive mapping with F(T) 6= ;. If {xn} is a sequence in C such that xn * x and
(I −T)xn → y, then (I −T)x = y. In particular, if y= 0, then x ∈ F(T).

Lemma 2.9 ([42]). Let X be a Banach space satisfying Opial’s condition and let {xn} be a
sequence in X . Let u, v ∈ X be such that

lim
n→∞‖xn −u‖ and lim

n→∞‖xn −v‖ exist.
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If {xnk } and {xmk } are subsequences of {xn} which converge weakly to u and v, respectively, then
u = v.

Proposition 2.10 ([12]). Let q > 1 and let X be a real smooth Banach space with the generalized
duality mapping jq. Let m ∈ N be fixed. Let {xi}m

i=1 ⊂ X and ti ≥ 0 for all i = 1,2, . . . ,m with
m∑

i=1
ti ≤ 1. Then we have∥∥∥∥∥ m∑

i=1
tixi

∥∥∥∥∥
q

≤
∑m

i=1 ti‖xi‖q

q− (q−1)
(∑m

i=1 ti
) .

3. Main Results
In this section, we aim to introduce and prove the strong convergence of an inertial method
with a forward-backward method for solving inclusion problems and split equilibrium problems
in Hilbert spaces. We first prove the following weak convergence theorem:

Theorem 3.1. Let H1, H2 be two real Hilbert spaces and C ⊂ H1, Q ⊂ H2 be nonempty closed
convex subsets of Hilbert spaces H1 and H2, respectively. Let A : H1 → H2 be a bounded linear
operator, and let F1 : C×C →R, F2 : Q×Q →R be bifunctions satisfying Assumption 2.2 and F2 is
upper semi-continuous in the first argument. Let B : H1 → H1 be an α-inverse strongly monotone
operator and D : H1 → 2H1 a maximal monotone operator such that S = (B+D)−1(0)∩Ω 6= ;,
where Ω= {z ∈ C : z ∈EP(F1) and Az ∈EP(F2)}. Let {xn}, {yn} and {zn} be sequences generated by
x0, x1 ∈ H1 and

yn = xn +θn(xn − xn−1)
zn =αn yn + (1−αn)TF1

rn (I −γA∗(I −TF2
rn )A)yn,

xn+1 =βnzn + (1−βn)JD
sn

(I − snB)zn, n ≥ 1,
(3.1)

where JD
sn

= (I + snD)−1, {sn} ⊂ (0,2α), {θn} ⊂ [0,θ], θ ∈ [0,1), {rn} ⊂ (0,∞) with γ ∈ (0,1/L) such
that L is the spectral radius of A∗A and {αn}, {βn} are sequences in [0,1]. Assume that the
following conditions hold:

(i)
∞∑

n=1
θn‖xn − xn−1‖ <∞;

(ii) 0< liminf
n→∞ αn ≤ limsup

n→∞
αn < 1;

(iii) 0< liminf
n→∞ βn ≤ limsup

n→∞
βn < 1;

(iv) liminf
n→∞ rn > 0;

(v) 0< liminf
n→∞ sn ≤ limsup

n→∞
sn < 2α.

Then the sequence {xn} converges weakly to q ∈ S.

Proof. We split the proof into three steps.
Step 1: Show that lim

n→∞‖xn − p‖ exists for every p ∈ S = (B+D)−1(0)∩Ω.

Write Tn = TF1
rn (I −γA∗(I −TF2

rn )A) and Jn = (I + snD)−1(I − snB).
Notice that we can write

zn =αn yn + (1−αn)Tn yn (3.2)
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and

xn+1 =βnzn + (1−βn)Jnzn. (3.3)

By the proof in Theorem 3.3 of [44], we know that Tn is quasi-nonexpansive. Let p ∈ S, we get

‖zn − p‖ ≤αn‖yn − p‖+ (1−αn)‖Tn yn − p‖
≤ ‖yn − p‖
≤ ‖xn − p‖+θn‖xn − xn−1‖. (3.4)

By Lemma 2.6, we have

‖xn+1 − p‖ ≤βn‖zn − p‖+ (1−βn)‖Jnzn − p‖
≤ ‖zn − p‖
≤ ‖xn − p‖+θn‖xn − xn−1‖. (3.5)

From Lemma 2.7 and the assumption (i), we obtain lim
n→∞‖xn − p‖ exists, in particular, {xn} is

bounded and also are {yn} and {zn}.
Step 2: Show that xn * q ∈ (B+D)−1(0). By Lemma 2.1, 2.6 and Tn is quasi-nonexpansive, we
have

‖xn+1 − p‖2 = ‖βn(zn − p)+ (1−βn)(Jnzn − p)‖2

≤βn‖zn − p‖2 + (1−βn)‖Jnzn − p‖2

≤ ‖zn − p‖2 − (1−βn)sn(2α− sn)‖Azn − Ap‖2 −‖zn − sn Azn − Jnzn + sn Ap‖
≤αn‖yn − p‖2 + (1−αn)‖Tn yn − p‖2 − (1−βn)sn(2α− sn)‖Azn − Ap‖2

−‖zn − sn Azn − Jnzn + sn Ap‖
≤ ‖yn − p‖2 − (1−βn)sn(2α− sn)‖Azn − Ap‖2 −‖zn − sn Azn − Jnzn + sn Ap‖
≤ ‖xn − p‖2 +2θn〈xn − xn−1, yn − p〉− (1−βn)sn(2α− sn)‖Azn − Ap‖2

−‖zn − sn Azn − Jnzn + sn Ap‖. (3.6)

Since lim
n→∞‖xn − p‖ exists, it follows from (3.6), the assumptions (i), (iii) and (v) that

lim
n→∞‖Azn − Ap‖ = lim

n→∞‖zn − sn Azn − Jnzn + sn Ap‖ = 0. (3.7)

This give, by the triangle inequality, that

lim
n→∞‖Jnzn − zn‖ = 0. (3.8)

Since liminf
n→∞ sn > 0, there is s > 0 such that sn ≥ s for all n ≥ 1. Lemma 2.5 (ii) yields that

‖TB,D
s zn − zn‖ ≤ 2‖Jnzn − zn‖. (3.9)

Then, by (3.8) and (3.9), we obtain

lim
n→∞‖TB,D

s zn − zn‖ = 0. (3.10)

From (3.8), we have

lim
n→∞‖xn+1 − zn‖ = lim

n→∞(1−βn)‖Jnzn − zn‖ = 0. (3.11)

Again by Lemma 2.1, 2.6 and Tn is quasi-nonexpansive, we have

‖xn+1 − p‖2 ≤βn‖zn − p‖2 + (1−βn)‖Jnzn − p‖2

≤ ‖zn − p‖2

≤αn‖yn − p‖2 + (1−αn)‖Tn yn − p‖2 −αn(1−αn)‖Tn yn − yn‖2
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≤ ‖yn − p‖2 −αn(1−αn)‖Tn yn − yn‖2

≤ ‖xn − p‖2 +2θn〈xn − xn−1, yn − p〉−αn(1−αn)‖Tn yn − yn‖2. (3.12)

Since lim
n→∞‖xn − p‖ exists and the assumption (ii), it follows from (3.12) that

lim
n→∞‖Tn yn − yn‖ = 0. (3.13)

This implies that

lim
n→∞‖zn − yn‖ = lim

n→∞(1−αn)‖Tn yn − yn‖ = 0. (3.14)

From the definition of {yn} and the assumption (i), we have

lim
n→∞‖yn − xn‖ = lim

n→∞θn‖xn − xn−1‖ = 0. (3.15)

It follows from (3.11), (3.14) and (3.15) that

‖xn+1 − xn‖ ≤ ‖xn+1 − zn‖+‖zn − yn‖+‖yn − xn‖→ 0 (3.16)

as n →∞. From (3.11) and (3.16), we obtain

‖zn − xn‖ ≤ ‖zn − xn+1‖+‖xn+1 − xn‖→ 0 (3.17)

as n →∞. Since {xn} is bounded and H1 is reflexive, ωw(xn) = {x ∈ H1 : xni * x, {xni } ⊂ {xn}} is
nonempty. Let q ∈ωw(xn) be an arbitrary element. Then there exists a subsequence {xni }⊂ {xn}
converging weakly to q. Let p ∈ ωw(xn) and {xnm} ⊂ {xn} be such that xnm * p. From (3.14),
we also have zni * q and znm * p. Since TB,D

s is nonexpansive, by Lemma 2.8, we have
p, q ∈ (B+D)−1(0). Applying Lemma 2.9, we obtain p = q.
Step 3: Show that q ∈Ω. Setting un = TF1

rn (I −γA∗(I −TF2
rn )A)yn. For any p ∈ S, we estimate

‖un − p‖2 = ‖TF1
rn

(I −γA∗(I −TF2
rn

)A)yn − p‖2

= ‖TF1
rn

(I −γA∗(I −TF2
rn

)A)yn −TF1
rn

p‖2

≤ ‖yn −γA∗(I −TF2
rn

)A yn − p‖2

≤ ‖yn − p‖2 +γ2‖A∗(I −TF2
rn

)A yn‖2 +2γ〈p− yn, A∗(I −TF2
rn

)A yn〉. (3.18)

Thus, we have

‖un − p‖2 ≤ ‖xn − p‖2 +2θn〈xn − xn−1, yn − p〉+γ2〈A yn −TF2
rn

A yn, AA∗(I −TF2
rn

)A yn〉
+2γ〈p− yn, A∗(I −TF2

rn
)A yn〉. (3.19)

On the other hand, we have

γ2〈A yn −TF2
rn

A yn, AA∗(I −TF2
rn

)A yn〉 ≤ Lγ2〈A yn −TF2
rn

A yn, A yn −TF2
rn

A yn〉
= Lγ2‖A yn −TF2

rn
A yn‖2 (3.20)

and

2γ〈p− yn, A∗(I −TF2
rn

)A yn〉 = 2γ〈A(p− yn), A yn −TF2
rn

A yn〉
= 2γ〈A(p− yn)+ (A yn −TF2

rn
A yn)− (A yn −TF2

rn
A yn), A yn −TF2

rn
A yn〉

= 2γ{〈Ap−TF2
rn

A yn, A yn −TF2
rn

A yn〉−‖A yn −TF2
rn

A yn‖2}

≤ 2γ
{1

2
‖A yn −TF2

rn
A yn‖2 −‖A yn −TF2

rn
A yn‖2

}
=−γ‖A yn −TF2

rn
A yn‖2. (3.21)

Using (3.19), (3.20) and (3.21), we have

‖un − p‖2 ≤ ‖xn − p‖2 +2θn〈xn − xn−1, yn − p〉+Lγ2‖A yn −TF2
rn

A yn‖2 −γ‖A yn −TF2
rn

A yn‖2
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= ‖xn − p‖2 +2θn〈xn − xn−1, yn − p〉+γ(Lγ−1)‖A yn −TF2
rn

A yn‖2. (3.22)

This implies that

‖zn − p‖2 ≤αn‖yn − p‖2 + (1−αn)‖un − p‖2

≤ ‖xn − p‖2 +2θn〈xn − xn−1, yn − p〉+γ(Lγ−1)‖A yn −TF2
rn

A yn‖2. (3.23)

Therefore, we have

−γ(Lγ−1)‖A yn −TF2
rn

A yn‖2 ≤ ‖xn − p‖2 −‖zn − p‖2 +2θn〈xn − xn−1, yn − p〉. (3.24)

Since γ(Lγ−1)< 0, it follows from (3.14), we obtain

lim
n→∞‖A yn −TF2

rn
A yn‖ = 0. (3.25)

Since TF1
rn is firmly nonexpansive and I −γA∗(TF2

rn − I)A is nonexpansive [44], it follows that

‖un − p‖2 = ‖TF1
rn

(yn −γA∗(I −TF2
rn

)A yn)−TF1
rn

p‖2

≤ 〈TF1
rn

(yn −γA∗(I −TF2
rn

)A yn)−TF1
rn

p, yn −γA∗(I −TF2
rn

)A yn − p〉
= 〈un − p, yn −γA∗(I −TF2

rn
)A yn − p〉

= 1
2

{‖un − p‖2 +‖yn −γA∗(I −TF2
rn

)A yn − p‖2 −‖un − yn +γA∗(I −TF2
rn

)A yn‖2}

≤ 1
2

{‖un − p‖2 +‖yn − p‖2 −‖un − yn +γA∗(I −TF2
rn

)A yn‖2}

= 1
2

{‖un − p‖2 +‖yn − p‖2 − (‖un − yn‖2 +γ2‖A∗(I −TF2
rn

)A yn‖2

+2γ〈un − yn, A∗(I −TF2
rn

)A yn〉)},
which implies that

‖un − p‖2 ≤ ‖yn − p‖2 −‖un − yn‖2 −2γ〈un − yn, A∗(I −TF2
rn

)A yn〉
≤ ‖yn − p‖2 −‖un − yn‖2 +2γ‖un − yn‖‖A∗(I −TF2

rn
)A yn‖. (3.26)

This implies that

‖zn − p‖2 ≤αn‖yn − p‖2 + (1−αn)‖un − p‖2

≤αn‖yn − p‖2 + (1−αn)
(‖yn − p‖2 −‖un − yn‖2 +2γ‖un − yn‖‖A∗(I −TF2

rn
)A yn‖

)
.

Therefore, we have

(1−αn)‖un − yn‖2 ≤ 2γ‖un − yn‖‖A∗(I −TF2
rn

)A yn‖+‖yn − p‖2 −‖zn − p‖2. (3.27)

From the condition (ii), (3.17) and (3.25), we have

lim
n→∞‖un − yn‖ = 0. (3.28)

It follows from (3.15) and (3.28) that

lim
n→∞‖un − xn‖ = 0. (3.29)

This implies that un * q as n →∞. We next show that q ∈EP(F1).
From un = TF1

rn (I −γA∗(I −TF2
rn )A)yn, we have

F1(un, y)+ 1
rn

〈y−un,un − yn +γA∗(I −TF2
rn

)A yn〉 ≥ 0 (3.30)

for all y ∈ C, which implies that

F1(un, y)+ 1
rn

〈y−un,un − yn〉+ 1
rn

〈y−un,γA∗(I −TF2
rn

)A yn〉 ≥ 0
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for all y ∈ C. By Assumption 2.2 (2), we have
1
rn

〈y−un,un − yn〉+ 1
rn

〈y−un,γA∗(I −TF1
rn

)A yn〉 ≥ F1(y,un)

for all y ∈ C. From liminf
n→∞ rn > 0, from (3.25), (3.28) and the Assumption 2.2 (4), we obtain

F1(y, q)≤ 0

for all y ∈ C. For any 0< t ≤ 1 and y ∈ C, let yt = ty+ (1− t)q. Since y ∈ C and q ∈ C, yt ∈ C and
hence F1(yt, q)≤ 0. So, by Assumption 2.2 (1) and (4), we have

0= F1(yt, yt)≤ tF1(yt, y)+ (1− t)F1(yt,w)≤ tF1(yt, y)

and hence F1(yt, y)≥ 0. So F1(q, y)≥ 0 for all y ∈ C. By Assumption 2.2 (3) we obtain q ∈EP(F1).
Since A is a bounded linear operator, A yn * Aq. Then it follows from (3.25) that

TF2
rn

A yn * Aq (3.31)

as n →∞. By the definition of TF2
rn A yn, we have

F2(TF2
rn

A yn, y)+ 1
rn

〈y−TF2
rn

A yn,TF2
rn

A yn − A yn〉 ≥ 0

for all y ∈ C. Since F2 is upper semi-continuous in the first argument and (3.31), it follows that

F2(Aq, y)≥ 0

for all y ∈ C. This shows that Aq ∈EP(F2). Hence q ∈ S.

Theorem 3.2. Let H1, H2 be two real Hilbert spaces and C ⊂ H1, Q ⊂ H2 be nonempty closed
convex subsets of Hilbert spaces H1 and H2, respectively. Let A : H1 → H2 be a bounded linear
operator, and let F1 : C×C →R, F2 : Q×Q →R be bifunctions satisfying Assumption 2.2 and F2 is
upper semi-continuous in the first argument. Let B : H1 → H1 be an α-inverse strongly monotone
operator and D : H1 → 2H1 a maximal monotone operator such that S = (B+D)−1(0)∩Ω 6= ;,
where Ω= {z ∈ C : z ∈EP(F1) and Az ∈EP(F2)}. Let {xn}, {yn} and {zn} be sequences generated by
x0, x1 ∈ H1 and

yn = xn +θn(xn − xn−1),
zn =αn yn + (1−αn)TF1

rn (I −γA∗(I −TF2
rn )A)yn,

wn =βnzn + (1−βn)JD
sn

(I − snB)zn,
Cn+1 = {z ∈ Cn : ‖wn − z‖2 ≤ ‖xn − z‖2 +2θ2

n‖xn − xn−1‖2 −2θn〈xn − z, xn−1 − xn〉}
xn+1 = PCn+1 x1, n ≥ 1

(3.32)

where JD
sn

= (I + snD)−1, {sn} ⊂ (0,2α), {θn} ⊂ [0,θ], θ ∈ [0,1), {rn} ⊂ (0,∞) with γ ∈ (0,1/L) such
that L is the spectral radius of A∗A and {αn}, {βn} are sequences in [0,1]. Assume that the
following conditions hold:

(i)
∞∑

n=1
θn‖xn − xn−1‖ <∞;

(ii) limsup
n→∞

αn < 1;

(iii) 0< liminf
n→∞ βn ≤ limsup

n→∞
βn < 1;

(iv) liminf
n→∞ rn > 0;

(v) 0< liminf
n→∞ sn ≤ limsup

n→∞
sn < 2α.

Then the sequence {xn} converges strongly to q = PSx1.

Communications in Mathematics and Applications, Vol. 10, No. 2, pp. 191–213, 2019



202 A Modified Inertial Shrinking Projection Method for Solving Inclusion Problems. . . : W. Cholamjiak et al.

Proof. We split the proof into six steps.
Step 1: Show that PCn+1 x1 is well-defined for every x ∈ H1. We know that (B+D)−1(0) and
Ω are closed and convex by Lemma 2.5 and Lemma 2.3, respectively. From the definition
of Cn+1, from Lemma 2.4, Cn+1 is closed and convex for each n ≥ 1. For each n ∈ N, we
put Tn = TF1

rn (I −γA∗(I −TF2
rn )A) and Jn = (I + snD)−1(I − snB) and let p ∈ S. By the proof in

Theorem 3.3 of [44], we know that Tn is quasi-nonexpansive, and since Jn is nonexpansive, we
have

‖wn − p‖2 ≤βn‖zn − p‖2 + (1−βn)‖Jnzn − p‖2

≤ ‖zn − p‖2

≤αn‖yn − p‖2 + (1−αn)‖Tn yn − p‖2

≤ ‖yn − p‖2

≤ ‖xn − p‖2 +2θn〈xn − xn−1, yn − p〉
≤ ‖xn − p‖2 +2θ2

n‖xn − xn−1‖2 −2θn〈xn − p, xn−1 − xn〉. (3.33)

So, we have p ∈ Cn+1, thus S ⊂ Cn+1. Therefore PCn+1 x1 is well-defined.
Step 2: Show that lim

n→∞‖xn − x1‖ exists. Since S is nonempty, closed and convex subset of H1,
there exists a unique v ∈ S such that

v = PSx1. (3.34)

From xn = PCn x1, Cn+1 ⊂ Cn and xn+1 ∈ Cn+1, ∀ n ≥ 1, we get

‖xn − x1‖ ≤ ‖xn+1 − x1‖, ∀ n ≥ 1. (3.35)

On the other hand, as S ⊂ Cn, we obtain

‖xn − x1‖ ≤ ‖v− x1‖, ∀ n ≥ 1. (3.36)

It follows that the sequence {xn} is bounded and nondecreasing. Therefore, lim
n→∞‖xn − x1‖ exists.

Step 3: Show that xn → q ∈ C as n → ∞. For m > n, by the definition of Cn, we have
xm = PCm x1 ∈ Cm ⊆ Cn. By Lemma 2.6, we obtain that

‖xm − xn‖2 ≤ ‖xm − x1‖2 −‖xn − x1‖2. (3.37)

Since lim
n→∞‖xn − x1‖ exists, it follows from (3.37) that lim

n→∞‖xm − xn‖ = 0. Hence {xn} is Cauchy
sequence in C and so xn → q ∈ C as n →∞.
Step 4: Show that q ∈ (B+D)−1(0). From Step 3, we have that lim

n→∞‖xn+1 − xn‖ = 0. Since
xn+1 ∈ Cn, we have

‖wn − xn‖ ≤ ‖wn − xn+1‖+‖xn+1 − xn‖
≤

√
‖xn − xn+1‖2 +2θ2

n‖xn − xn−1‖2 −2θn〈xn − xn+1, xn−1 − xn〉+‖xn+1 − xn‖. (3.38)

By the assumption (i) and (3.38), we obtain

lim
n→∞‖wn − xn‖ = 0. (3.39)

By Lemma 2.1 and Jn is nonexpansive and Tn is quasi-nonexpansive, we have

‖wn − p‖2 =βn‖zn − p‖2 + (1−βn)‖Jnzn − p‖2 −βn(1−βn)‖Jnzn − zn‖2

≤ ‖zn − p‖2 −βn(1−βn)‖Jnzn − zn‖2

≤αn‖yn − p‖2 + (1−αn)‖Tn yn − p‖2 −βn(1−βn)‖Jnzn − zn‖2
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≤ ‖yn − p‖2 −βn(1−βn)‖Jnzn − zn‖2

≤ ‖xn − p‖2 +2θn〈xn − xn−1, yn − p〉−βn(1−βn)‖Jnzn − zn‖2. (3.40)

This implies that

βn(1−βn)‖Jnzn − zn‖2 ≤ ‖xn − p‖2 −‖wn − p‖2 +2θn〈xn − xn−1, yn − p〉. (3.41)

Then, by the assumption (i), (iii) and (3.39), we obtain

lim
n→∞‖Jnzn − zn‖ = 0. (3.42)

This implies that

lim
n→∞‖wn − zn‖ = lim

n→∞(1−βn)‖Jnzn − zn‖ = 0. (3.43)

It follows from (3.39) and (3.43) that

lim
n→∞‖zn − xn‖ = 0. (3.44)

Since liminf
n→∞ sn > 0, there is s > 0 such that sn ≥ s for all n ≥ 1. Lemma 2.5 (ii) yields that

‖TB,D
s zn − zn‖ ≤ 2‖Jnzn − zn‖. (3.45)

Then, by (3.42) and (3.45), we obtain

lim
n→∞‖TB,D

s zn − zn‖ = 0. (3.46)

Since {xn} is bounded and H1 is reflexive, ωw(xn) = {x ∈ H1 : xni * x, {xni } ⊂ {xn}} is nonempty.
Let q ∈ωw(xn) be an arbitrary element. Then there exists a subsequence {xni }⊂ {xn} converging
weakly to q. Let p ∈ωw(xn) and {xnm} ⊂ {xn} be such that xnm * p. From (3.44), we also have
zni * q and znm * p. Since TB,D

s is nonexpansive, by Lemma 2.8, we have p, q ∈ (B+D)−1(0).
Applying Lemma 2.9, we obtain p = q.
Step 5: Show that q ∈Ω. By the same proof of Step 3 in Theorem 3.1, we have q ∈Ω.
Step 6: Show that q = PSx1. Since xn = PCn x1 and S ⊂ Cn, we obtain

〈x1 − xn, xn − z〉 ≥ 0, ∀ z ∈ S. (3.47)

By taking the limit in (3.47), we obtain

〈x1 − q, q− z〉 ≥ 0, ∀ z ∈ S. (3.48)

This shows that q = PSx1, which completes the proof.

Remark 3.3. We remark here that the condition (i) is easily implemented in numerical
computation since the valued of ‖xn− xn−1‖ is known before choosing θn. Indeed, the parameter
θn can be chosen such that 0≤ θn ≤ θ̄n, where

θ̄n =
min

{
ωn

‖xn−xn−1‖ ,θ
}

if xn 6= xn−1,

θ otherwise,
where {ωn} is a positive sequence such that

∑∞
n=1ωn <∞.

We now give an example in Euclidean space R3 to support the main theorem.

Example 3.4. Let H1 = H2 =R3, C = {(x, y, z) ∈R3|
√

x2 + y2 + z2 ≤ 1} and Q = {(x, y) ∈R3|〈a, x〉 ≥
b} where a = (2,−1,3), b = 1. For r > 0, let TF1

r x = PCx and TF2
r x = PQ x. Let A,B,D : R3 → R3

be defined by Ax =
(1 −1 5

0 1 3
0 0 2

)( x
y
z

)
, Bx = 3x+ (1,2,1) and Dx = 4x where x = (x1, x2, x3) ∈R3. We see

that B is 1/3-inverse strongly monotone and D is maximal monotone. Moreover, by a direct

Communications in Mathematics and Applications, Vol. 10, No. 2, pp. 191–213, 2019



204 A Modified Inertial Shrinking Projection Method for Solving Inclusion Problems. . . : W. Cholamjiak et al.

calculation, we have for s > 0

JD
s (x− sBx)= (I + sD)−1(x− sBx)

= 1−3s
1+4s

x− s
1+4s

(1,2,1)

where x = (x1, x2, x3) ∈R3. Since α= 1
3 , we can choose sn = 0.1 for all n ∈N. Since L = 3, we can

also choose γ= 0.1. Let αn =βn = rn = n
100n+1 and

θn =
{

min
{

1
n2‖xn−xn−1‖ ,0.5

}
if xn 6= xn−1,

0.5 otherwise.
We provide a numerical test of a comparison between our inertial forward-backward method
defined in Theorem 3.1 and a standard forward-backward method (i.e. θn = 0). The stoping
criterion is defined by En = ‖xn+1− xn‖ < 10−9. The different choices of x0 and x1 are giving as
follow:
Choice 1: x0 = (1,−5,8)T and x1 = (8,−5,3)T ;
Choice 2: x0 = (−1,6,7)T and x1 = (−3,5,−3)T ;
Choice 3: x0 = (−2.3,3.2,−4.5)T and x1 = (6.1,−5.2,−1.1)T .

Table 1. Comparison of θn 6= 0 and θn = 0 in Example 3.4

No. of Iter. cpu (Time).

θn 6= 0 θn = 0 θn 6= 0 θn = 0

Choice 1: x0 = (1,−5,8)T x1 = (8,−5,3)T 54 70 0.013965 0.022513

Choice 2: x0 = (−1,6,7)T , x1 = (−3,5,−3)T 60 76 0.017255 0.022136

Choice 3: x0 = (−2.3,3.2,−4.5)T , x1 = (6.1,−5.2,−1.1)T 62 74 0.019725 0.022350

The error plotting En of θn 6= 0 and θn = 0 for each of the choices in Table 1 is shown in Figure 1-3,
respectively.

Figure 1. Comparison of iterations for Choice 1 in Example 3.4
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Figure 2. Comparison of iterations for Choice 2 in Example 3.4

Figure 3. Comparison of iterations for Choice 3 in Example 3.4

Remark 3.5. From Figure 1-3, it is shown that our inertial forward-backward method has a
good convergence speed and requires small number of iterations than the standard forward-
backward method.

4. Applications and Numerical Experiments
In this section, we apply our main result to solve the common problems between the split
feasibility problem and the convex minimization problem and also solve the common problems
between the split feasibility problem and the variational inequality problem. The split feasibility
problem (SFP) [10] is to find a point x̂ such that

x̂ ∈ C, Tx̂ ∈Q, (4.1)

where C and Q are, respectively, closed convex subsets of Hilbert spaces H1 and H2 and
T : H1 → H2 is a bounded linear operator with its adjoint T∗. For solving the SFP (4.1), Byrne [8]
proposed the following CQ algorithm:

xn+1 = PC(xn −λT∗(I −PQ)Txn), (4.2)
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where 0 < λ < 2α with α = 1/‖T‖2. Here ‖T‖2 is the spectral radius of T∗T . We know that
T∗(I − PQ)T is 1/‖T‖2-inverse strongly monotone [9]. So, we now obtain immediately the
following strong convergence theorem for solving the SFP (4.1).

4.1 Convex Minimization Problem
Let F : H →R be a convex smooth function and G : H →R be a convex, lower-semicontinuous
and nonsmooth function. We consider the problem of finding x̂ ∈ H such that

F(x̂)+G(x̂)≤ F(x)+G(x) (4.3)

for all x ∈ H. This problem (4.3) is equivalent, by Fermat’s rule, to the problem of finding x̂ ∈ H
such that

0 ∈∇F(x̂)+∂G(x̂) (4.4)

where ∇F is a gradient of F and ∂G is a subdifferential of G. The minimizer of F +G will
be denoted by S. We know that if ∇F is 1

L -Lipschitz continuous, then it is L-inverse strongly
monotone [3, Corollary 10]. Moreover, ∂G is maximal monotone [40, Theorem A]. If we set
B =∇F and C = ∂G in Theorem 3.2, then we obtain the following result.

Theorem 4.1. Let H1, H2 be two real Hilbert spaces and C ⊂ H1, Q ⊂ H2 be nonempty closed
convex subsets of Hilbert spaces H1 and H2, respectively. Let T : H1 → H2 be a bounded linear
operator. Let F : H → R be a convex and differentiable function with 1

L -Lipschitz continuous
gradient ∇F and G : H →R be a convex and lower semi-continuous function which F+G attains a
minimizer. Assume that S∩SFP 6= ;. Let {xn}, {yn} and {zn} be sequences generated by x0, x1 ∈ H1
and 

yn = xn +θn(xn − xn−1)
zn =αn yn + (1−αn)PC(yn −γT∗(I −PQ)T yn),
wn =βnzn + (1−βn)J∂G

sn
(zn − sn∇F(zn)),

Cn+1 = {z ∈ Cn : ‖wn − z‖2 ≤ ‖xn − z‖2 +2θ2
n‖xn − xn−1‖2 −2θn〈xn − z, xn−1 − xn〉}

xn+1 = PCn+1 x1, n ≥ 1

(4.5)

where J∂G
rn

= (I + sn∂G)−1, {sn}⊂ (0,2α), {θn}⊂ [0,θ], θ ∈ [0,1) with γ ∈ (0,1/‖T‖2) and {αn}, {βn}
are sequences in [0,1]. Assume that the following conditions hold:

(i)
∞∑

n=1
θn‖xn − xn−1‖ <∞;

(ii) limsup
n→∞

αn < 1;

(iii) 0< liminf
n→∞ βn ≤ limsup

n→∞
βn < 1;

(iv) 0< liminf
n→∞ sn ≤ limsup

n→∞
sn < 2α.

Then the sequence {xn} converges strongly to q = PS∩SFP x1.

Example 4.2. Let H1 = H2 = R3, C = {
(x1, x2, x3) ∈ R3 :

√
x2

1 + x2
2 + x2

3 ≤ 1
}

and Q = {(x1, x2, x3) ∈
R3 : 〈a, x〉 ≥ b}, where a = (2,4,5) and b = 5. Let T =

( 1 2 1−1 0 1
0 −2 2

)
. Solve the following minimization

problem:

min
x∈R3

‖x‖2
2 + (3,5,−1)x+‖x‖1, (4.6)

where x = (x1, x2, x3) ∈R3.
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Set F(x)= ‖x‖2
2 + (3,5,−1)x and G(x)= ‖x‖1 for all x ∈R3. We have for x ∈R3 and s > 0, ∇F =

2x+(3,5,−1) and J∂G
s (x)= (max{|x1|−s,0}sign(x1),max{|x2|−s,0}sign(x2),max{|x3|−s,0}sign(x3)).

We see that ∇F is 2-Lipschitz continuous, consequently, it is 1/2-inverse strongly monotone.
In this example, we choose γ= 0.1. Let αn, βn, sn and θn be as in Example 3.4. The stopping
criterion is defined by ‖xn+1− xn‖ < 10−9. The different choices of x0 and x1 are given as follows:
Choice 1: x0 = (−2,8,−5)T and x1 = (−3,−5,8)T ;
Choice 2: x0 = (−1,7,6)T and x1 = (−3,1,−1)T ;
Choice 3: x0 = (−2.3,3.2,−4.5)T and x1 = (6.1,−5.2,−1.1)T .

Table 2. Comparison of θn 6= 0 and θn = 0 in Example 4.2

No. of Iter. cpu (Time).

θn 6= 0 θn = 0 θn 6= 0 θn = 0

Choice 1: x0 = (−2,8,−5)T x1 = (−3,−5,8)T 48 67 0.016348 0.017879

Choice 2: x0 = (−1,7,6)T , x1 = (−3,1,−1)T 44 61 0.022234 0.031774

Choice 3: x0 = (−2.3,3.2,−4.5)T , x1 = (6.1,−5.2,−1.1)T 47 59 0.015349 0.029733

The error plotting En of θn 6= 0 and θn = 0 for each of the choices in Table 2 is shown in
Figures 4-6, respectively.

Figure 4. Comparison of iterations for Choice 1 in Examnple 4.2

Figure 5. Comparison of iterations for Choice 2 in Examnple 4.2
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Figure 6. Comparison of iterations for Choice 3 in Examnple 4.2

4.2 Variational Inequality Problem
The variational inequality problem (VIP) is to find a point x̂ ∈ C such that

〈Ax̂, x− x̂〉 ≥ 0, ∀ x ∈ C (4.7)

where A : C → H is a nonlinear monotone operator. The solution set of (4.7) will be denoted by
S. The extragradient method is used to solve the VIP (4.7). It is also known that the VIP is a
special case of the problem of finding zeros of the sum of two monotone operators. Indeed, the
resolvent of the normal cone is nothing but the projection operator. So, we obtain immediately
the following results.

Theorem 4.3. Let H1, H2 be two real Hilbert spaces and C ⊂ H1, Q ⊂ H2 be nonempty closed
convex subsets of Hilbert spaces H1 and H2, respectively. Let T : H1 → H2 be a bounded linear
operator. Let A : H → H be an α-inverse strongly monotone operator and C be a nonempty closed
convex subset of H. Assume that S∩SFP 6= ;. Let {xn}, {yn} and {zn} be sequences generated by
x0, x1 ∈ H1 and

yn = xn +θn(xn − xn−1)
zn =αn yn + (1−αn)PC(yn −γT∗(I −PQ)T yn),
wn =βnzn + (1−βn)PC(zn − sn Azn),
Cn+1 = {z ∈ Cn : ‖wn − z‖2 ≤ ‖xn − z‖2 +2θ2

n‖xn − xn−1‖2 −2θn〈xn − z, xn−1 − xn〉}
xn+1 = PCn+1 x1, n ≥ 1

(4.8)

where {sn} ⊂ (0,2α), {θn} ⊂ [0,θ], θ ∈ [0,1) with γ ∈ (0,1/‖T‖2) and {αn}, {βn} are sequences in
[0,1]. Assume that the following conditions hold:

(i)
∞∑

n=1
θn‖xn − xn−1‖ <∞;

(ii) limsup
n→∞

αn < 1;

(iii) 0< liminf
n→∞ βn ≤ limsup

n→∞
βn < 1;

(iv) 0< liminf
n→∞ sn ≤ limsup

n→∞
sn < 2α.

Then the sequence {xn} converges strongly to q = PS∩SFP x1.

Example 4.4. Let H1 = H2 = R3, C = {(x1, x2, x3) ∈ R3 :
√

x2
1 + x2

2 + x2
3 ≤ 1} and Q = {(x1, x2, x3) ∈

R3 : 〈a, x〉 ≥ b}, where a = (2,4,5) and b = 5. Let T =
( 1 2 1−1 0 1

0 −2 2

)
and A =

(1 −1 5
0 1 3
0 0 2

)
.
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In this example, we choose γ= 0.1. Let αn, βn, sn and θn be as in Example 3.4. The stoping
criterion is defined by ‖xn+1− xn‖ < 10−9. The different choices of x0 and x1 are given as follows:
Choice 1: x0 = (3,−7,1)T and x1 = (−9,6,2)T ;
Choice 2: x0 = (7,1,−3)T and x1 = (4,9,−5)T ;
Choice 3: x0 = (−1.5,4.1,−0.5)T and x1 = (3.2,−7.4,−1.5)T .

Table 3. Comparison of θn 6= 0 and θn = 0 in Example 4.2

No. of Iter. cpu (Time)

θn 6= 0 θn = 0 θn 6= 0 θn = 0

Choice 1: x0 = (3,−7,1)T x1 = (−9,6,2)T 42 47 0.012358 0.022709

Choice 2: x0 = (7,1,−3)T , x1 = (4,9,−5)T 32 60 0.006002 0.018696

Choice 3: x0 = (−1.5,4.1,−0.5)T , x1 = (3.2,−7.4,−1.5)T 36 43 0.013849 0.021260

The error plotting En of θn 6= 0 and θn = 0 for each of the choices in Table 3 is shown in
Figures 7-9, respectively.

Figure 7. Comparison of iterations for Choice 1 in Example 4.4

Figure 8. Comparison of iterations for Choice 2 in Example 4.4
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Figure 9. Comparison of iterations for Choice 3 in Example 4.4

5. Conclusion
In this paper, we present a new modified inertial forward-backward splitting method combining
the SP-iteration for solving the split equilibrium problem and the inclusion problem. The weak
convergence theorem is established under some suitable conditions in Hilbert spaces. We then
use the shrinking projection method for obtaining the strong convergence theorem and apply
our result to find the common elements of the set of solutions of split feasibility problems and
variational inequality problems and also find the common elements of the set of solutions of
split feasibility problems and the minimization problems. Some numerical experiments show
that our inertial forward-backward method have a competitive advantage over the standard
forward-backward method (see in Tables 1-3 and Figures 1-9).
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