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1. Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Suppose that
C ⊂H is nonempty, closed and convex. A mapping T : C → C is said to be nonexpansive if

‖Tx−T y‖ ≤ ‖x− y‖
for al x, y ∈ C. The set of fixed point of T is defined by Fix(T) := {x ∈ C : Tx = x}.

In this paper, we consider the following fixed point problem:

Problem 1.1. Suppose that T : C → C is nonexpansive with Fix(T) 6=∅. Then

find x∗ ∈ C such that Tx∗ = x∗ .

The fixed point problems for nonexpansive mapping [5, 14, 18] have been investigated in
many practical application, and they include convex feasibility problem, convex optimization
problems, problems of finding the zeros of monotone operators, and monotone variational
inequalities.

We first apply the Picard algorithm to the smooth convex mininmization problem and
illustrate that the Picard algorithm is the steepest descent method [12] have been widely seen
as an efficient accelerated version of most gradient methods, we introduce an accelerated Picard
algorithm by combining the conjugate gradient methods and the Picard algorithm. Finally,
based on the accelerated Picard algorithm, we present accelerations of the S-algorithm.

In this paper, we propose two accelerated algorithms for finding a fixed point of a
nonexpansive mapping and prove the convergence of the algorithms. Finally, the numerical
examples are presented to demonstrate the effectiveness and fast convergence of the accelerated
S-algorithm.

2. Preliminaries
2.1 Picard Algorithm and Our Algorithm
The Picard algorithm generates the sequence {xn}∞n=0 as follows: given x0 ∈H ,

xn+1 = Txn, n ≥ 0. (2.1)

The Picard algorithm (2.1) converges to a fixed point of the mapping T if T : C → C is contraction.
When Fix(T) is the set of all minimizers of a convex, continuously Frechet differentiable

functional f over H , that algorithm (2.1) is the steepest descent method [9,12] to minimize
f over H . Suppose that the gradient of f , denoted by ∇ f , is Lipschitz continuous with a
constant L > 0 and define T f : H →H by

T f := I −λ∇ f , (2.2)

where λ ∈ (0,2/L) and I : H →H stands for the identity mapping. Accordingly, T f satisfies the
contraction condition [7] and

Fix(T f )= argmin
x∈H

f (x) :=
{

x∗ ∈H : f (x∗)= min
x∈H

f (x)
}
.

Therefore, algorithm (2.1) with T := T f can be expressed as follows:{
d f

n+1 :=−∇ f (xn),
xn+1 := T f (xn)= xn −λ∇ f (xn)= xn +λd f

n+1.
(2.3)
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The conjugate gradient methods [12] are popular acceleration methods of the steepest descent
method. The conjugate gradient direction of f at xn(n ≥ 0) is

d f ,CGD
n+1 :=−∇ f (xn)+βnd f ,CGD

n ,

where d f ,CGD
0 :=−∇ f (x0) and {βn}∞n=0 ⊂ (0,∞), which, together with (2.2), implies that

d f ,CGD
n+1 = 1

λ
(T f (xn)− xn)+βnd f ,CGD

n . (2.4)

By replacing d f
n+1 := −∇ f (xn) in algorithm (2.3) with d f ,CGD

n+1 defined by (2.4), we get the
accelerated Picard algorithm as follows:d f ,CGD

n+1 := 1
λ

(T f (xn)− xn)+βnd f ,CGD
n ,

xn+1 := xn +λd f ,CGD
n+1 .

(2.5)

The convergence condition of Picard algorithm is very restrictive and if does not converges for
general nonexpansive mapping [21]. So, In 2007, Agarwal, O’Regan and Sahu [1] introduced
the S-iteration process{

yn = (1−γn)xn +γnTxn,

xn+1 = (1−αn)Txn +αnT yn
(2.6)

and showed that the sequence generated by it converges to a fixed point of a nonexpansive
mapping. In this paper, we combine (2.5)-(2.6) to present novel algorithm.

2.2 Some Lemmas
We will use the following notations:

Lemma 2.1 ([6]). Suppose that C ⊂ H is nonempty, closed and convex, T : C → C is
nonexpansive mapping, and x ∈H . Then Fix(T) is closed and convex.

Lemma 2.2 ([3]). Suppose that C ⊂ H is nonempty, closed and convex, T : C → C is
nonexpansive mapping, and x ∈H . Then x̂ = PCx if and only if 〈x− x̂, y− x̂〉 ≤ 0(y ∈ C).

Lemma 2.3. Let H be a real Hilbert space. There hold the following identities:
(i) ‖x− y‖2 = ‖x‖2 −‖y‖2 −2〈x− y, y〉 ∀ x, y ∈H ,

(ii) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2.

Lemma 2.4 ([19]). Assume that {an} is a sequence of nonnegative real numbers satisfying the
property

an+1 ≤ an +un, n ≥ 0,

where {un} is a sequence of nonnegative real numbers such that
∞∑

n=1
un <∞. Then lim

n→∞an exists.

Lemma 2.5 ([13]). Suppose that {xn} weakly converges to x ∈H and y 6= x. Then

liminf
n→∞ ‖xn − x‖ ≤ liminf

n→∞ ‖xn − y‖.

Lemma 2.6 ([2]). Let {Ψn}, {δn} and {αn} be the sequence in [0,+∞) such that Ψn+1 ≤
Ψn+αn(Ψn−Ψn−1)+δn for each n ≥ 1,

∞∑
n=1

δn < +∞ and there exists a real number α with

0≤αn ≤α< 1 for all n ∈N. Then the following conditions hold:
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(1)
∑

n≥1
[Ψn −Ψn−1]+ <+∞, where [t]+ =max{t,0};

(2) there exists Ψ∗ ∈ [0,+∞) such that lim
n→+∞Ψn =Ψ∗.

Lemma 2.7 ([3]). Let D be a nonempty closed convex subset of H and T : D → H be a
nonexpansive mapping. Let {xn} be a sequence in D and x ∈H such that xn * x and Txn−xn → 0
as n →+∞. Then x ∈Fix(T).

Lemma 2.8 ([3]). Let C be a nonempty subset of H and {xn} be a sequence in H such that the
following two condition hold:

(1) for all x ∈ C, lim
n→∞‖xn − x‖ exists;

(2) every sequential weak cluster point of {xn} is in C.
Then the sequence {xn} converges weakly to a point in C.

Lemma 2.9 ([17]). Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be
a sequence in [0,1] with 0< liminf

n→∞ βn ≤ limsup
n→∞

βn < 1. Suppose xn+1 = (1−βn)yn +βnxn for all

integers n ≥ 0 and limsup
n→∞

(‖yn+1 − yn‖−‖xn+1 − xn‖)≤ 0. Then, lim
n→∞‖yn − xn‖ = 0.

Lemma 2.10 ([20]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1−αn)an +δn

where {αn} is a sequence in (0,1) and {δn} is a sequence in R such that

(1)
∞∑

n=1
αn =∞;

(2) limsup
n→∞

δn

αn
≤ 0 or

∞∑
n=1

|δn| <∞.

Then, lim
n→∞an = 0.

3. Main Results
In this section, we present the accelerated S-algorithm and give its convergence.

Algorithm 3.1.
Step 0: Choose λ> 0 and x0 ∈H arbitrarily and set {αn}n∈N ⊂ (0,1), {γn}n∈N ⊂ (0,1),

{βn}n∈N ⊂ [0,∞). Compute d0 := (Tx0 − x0)/α.

Step 1: Given xn,dn ∈H , compute dn+1 ∈H by

dn+1 := 1
λ

(Txn − xn)+βndn.

Step 2: Compute xn+1 ∈H as follows
yn = xn +λdn+1,
zn = γnxn + (1−γn)yn,
xn+1 =αn yn + (1−αn)Tzn.

Step 3: Put n := n+1, and go to Step 1.
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We can check that Algorithm 3.1 coincides with the S-algorithm (2.6) when βn := 0 (n ∈N).

In this section, we make the following assumption:

Assumption 3.2. The sequence {βn}∞n=0, {αn}∞n=0 and {γn}∞n=0 satisfy

(A1)
∞∑

n=0
αn =∞ and lim

n→∞αn = 0;

(A2) 0< liminf
n→∞ βn ≤ limsup

n→∞
βn < 1;

(A3)
∞∑

n=0
βn <∞ and βn ≤α2

n;

(A4)
∞∑

n=0
|αn+1 −αn| <∞ and

∞∑
n=0

|βn+1 −βn| <∞.

Before doing the convergence analysis of Algorithm 3.1, we first show the four lemmas:

Lemma 3.3. Suppose that T : H → H is nonexpansive with Fix(T) 6= ∅ and that
Assumption 3.2 holds. Then {dn}∞n=0, {xn}∞n=0, {yn}∞n=0 and {zn}∞n=0 are bounded.

Proof. We have from (A3) that lim
n→∞βn = 0. Accordingly, there exists n0 ∈N such that βn ≤ 1

2 for
all n ≥ n0. Define

M1 =max
{

max
1≤k≤n0

‖dk‖, (2/λ)sup
n∈N

‖Txn − xn‖
}
.

Then (A3) implies that M1 <∞. Assume that ‖dn‖ ≤ M1 for some n ≥ n0. The triangle inequality
ensure that

‖dn+1‖ =
∥∥∥1
λ

(Txn − xn)+βndn

∥∥∥
≤ 1
λ
‖Txn − xn‖+βn‖dn‖

≤ M1

which means that ‖dn‖ ≤ M1 for all n ≥ 0, i.e., {dn}∞n=0 is bounded. The definition of {yn}∞n=0
implies that

yn = xn +λ
(1
λ

(Txn − xn)+βndn

)
= Txn +λβndn. (3.1)

The nonexpansive of T and (3.1) implies that, for any p ∈Fix(T) and for all n ≥ n0,

‖yn − p‖ = ‖Txn +λβndn − p‖
≤ ‖Txn − p‖+λβn‖dn‖
≤ ‖xn − p‖+λM1βn (3.2)

and

‖zn − p‖ = ‖γnxn − (1−γn)yn − p‖
= ‖γn(xn − p)+ (1−γn)(yn − p)‖
≤ γn‖xn − p‖+ (1−γn)‖yn − p‖. (3.3)
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Therefore, we find

‖xn+1 − p‖ = ‖αn yn + (1−αn)Tzn − p‖
= ‖αn(yn − p)+ (1−αn)(Tzn − p)‖
≤αn‖yn − p‖+ (1−αn)‖zn − p‖
≤αn‖yn − p‖+ (1−αn)γn‖xn − p‖+ (1−αn)(1−γn)‖yn − p‖
≤ (1− (1−αn)γn))‖yn − p‖+ (1−αn)γn‖xn − p‖
≤ (1−αn)γn‖xn − p‖+ (1− (1−αn)γn))(‖xn − p‖+λM1βn)
≤ ‖xn − p‖+λM1βn (3.4)

which implies

‖xn − p‖ ≤ ‖x0 − p‖+λM1

n−1∑
n=0

βk <∞.

So, we get that {xn}∞n=0 is bounded. From (3.2) and (3.3) it follows that {yn}∞n=0 and {zn}∞n=0 are
bounded.

In addition, using Lemma 2.4, (A3) and (3.4), we obtain lim
n→∞‖xn − p‖ exists.

Lemma 3.4. Suppose that T : H →H is nonexpansive with Fix(T) 6=∅ and Assumption 3.2
holds. Then

lim
n→∞‖xn+1 − xn‖ = 0.

Proof. Equation (3.1), the triangle inequality, and the nonexpansive of T imply that, for all
n ∈N,

‖yn+1 − yn‖ = ‖Txn+1 −Txn +λ(βn+1dn1 −βndn)‖
≤ ‖Txn+1 −Txn‖+λ‖βn+1dn1 −βndn‖
≤ ‖xn+1 − xn‖+λ(βn+1‖dn1‖−βn‖dn‖)

which, together with ‖dn‖ ≤ M1(n ≥ n0) and (A3), implies that, for all n ≥ n0,

‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖+λM1(α2
n+1 +α2

n). (3.5)

On the other hand, from αn ≤ |αn+1 −αn| ≤αn+1 and αn < 1 (n ∈N), we have that, for all n ∈N,

α2
n+1 +α2

n ≤α2
n+1 +αn(|αn+1 −αn|+αn+1)

≤ (αn+1 +αn)αn+1 +|αn+1 −αn|. (3.6)

Next, by Algorithm 3.1, the triangle inequality, and the nonexpansive of T imply that, for all
n ∈N,

‖zn+1 − zn‖ = ‖γn+1xn+1 + (1−γn+1)T yn+1 −γnxn − (1−γn)T yn‖
= ‖γn+1xn+1 −γn+1xn +γn+1xn + (1−γn+1)T yn+1

− (1−γn+1)T yn + (1−γn+1)T yn −γnxn − (1−γn)T yn‖
≤ γn+1‖xn+1 − xn‖+ (1−γn+1)‖yn+1 − yn‖+|γn+1 −γn|‖xn‖+|γn+1 −γn|‖yn‖
= γn+1‖xn+1 − xn‖+ (1−γn+1)‖yn+1 − yn‖+|γn+1 −γn|(‖xn‖+‖yn‖)
≤ γn+1‖xn+1 − xn‖+ (1−γn+1)‖yn+1 − yn‖+M2|γn+1 −γn| (3.7)

which M2 := sup
n∈N

(‖xn‖+‖yn‖)<∞.
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Setting xn+1 = (1−βn)wn +βnxn for all n ≥ 0, we see that wn = xn+1−βnxn
1−βn

, then

‖wn+1 −wn‖ =
∥∥∥ xn+1 −βn+1xn+1

1−βn+1
− xn+1 −βnxn

1−βn

∥∥∥
=

∥∥∥ 1
1−βn+1

(
αn+1 yn+1 − (1−αn+1)Tzn+1 −βn+1

(
αn yn − (1−αn)Tzn

))
− 1

1−βn

(
αn yn + (1−αn)Tzn +βnxn

)∥∥∥
=

∥∥∥ 1
1−βn+1

(
αn+1 yn+1 −αn+1 yn +αn+1 yn − (1−αn+1)Tzn+1

+ (1−αn+1)Tzn − (1−αn+1)Tzn −βn+1

(
αn yn − (1−αn)Tzn

))
− 1

1−βn

(
αn yn + (1−αn)Tzn +βnxn

)∥∥∥
≤ αn+1

1−βn+1
‖yn+1 − yn‖+ (1−αn+1)

1−βn+1
‖zn+1 − zn‖

+
∣∣∣ αn+1

1−βn+1
− αnβn+1

1−βn+1
− αn

1−βn+1

∣∣∣‖yn‖

+
∣∣∣ (1−αn+1)

1−βn+1
− (1−αn)βn+1

1−βn+1
− (1−αn)

1−βn+1

∣∣∣‖Tzn‖+ βn

1−βn
‖xn‖ (3.8)

From (3.5) and (3.7), we have

‖wn+1 −wn‖ ≤ βn+1

1−βn+1
‖xn+1 − xn‖+‖xn+1 − xn‖

+
∣∣∣ αn+1

1−βn+1
− αnβn+1

1−βn+1
− αn

1−βn+1

∣∣∣‖yn‖

+
∣∣∣ (1−αn+1)

1−βn+1
− (1−αn)βn+1

1−βn+1
− (1−αn)

1−βn+1

∣∣∣‖Tzn‖+ βn

1−βn
‖xn‖

+λM1(1− (1−αn+1)γn+1)
(
(αn+1 −αn)αn+1 +|αn+1 −αn|

)
. (3.9)

Therefore,

‖wn+1 −wn‖−‖xn+1 − xn‖ ≤ βn+1

1−βn+1
‖xn+1 − xn‖

+
∣∣∣ αn+1

1−βn+1
− αnβn+1

1−βn+1
− αn

1−βn+1

∣∣∣‖yn‖

+
∣∣∣ (1−αn+1)

1−βn+1
− (1−αn)βn+1

1−βn+1
− (1−αn)

1−βn+1

∣∣∣‖Tzn‖+ βn

1−βn
‖xn‖

+λM1(1− (1−αn+1)γn+1)
(
(αn+1 −αn)αn+1 +|αn+1 −αn|

)
. (3.10)

It follows from the condition (A1), (A2) and (A4), that

limsup
n→∞

(‖wn+1 −wn‖−‖xn+1 − xn‖)≤ 0. (3.11)

Applying Lemma 2.9, we obtain lim
n→∞‖wn − xn‖ = 0 and we also have

‖xn+1 − xn‖ = (1−βn)‖wn − xn‖→ 0,n →∞. (3.12)
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Hence,

lim
n→∞‖xn+1 − xn‖ = 0. (3.13)

Lemma 3.5. Suppose that T : H →H is nonexpansive with Fix(T) 6=∅ and Assumption 3.2
holds. Then

lim
n→∞‖xn −Txn‖ = 0.

Proof. By Algorithm 3.1, and the nonexpansive of T , we have for all n ∈N
‖xn+1 − yn‖ = ‖αn yn + (1−αn)Tzn − yn‖

= (1−αn)‖Tzn − yn‖
≤ (1−αn)M3

by (A1) means that lim
n→∞‖xn+1 − yn‖ = 0. Since the triangle inequality ensures that

‖yn − xn‖ ≤ ‖yn − xn+1‖+‖xn+1 − xn‖
for all n ∈N, we find from (3.13) that

lim
n→∞‖dn+1‖ = 1

λ
lim

n→∞‖yn − xn‖ = 0. (3.14)

From the definition of dn+1(n ∈N), we have, for all n ≥ n0,

0≤ 1
λ
‖Txn − xn‖ ≤ ‖dn+1‖+βn‖dn‖ ≤ ‖dn+1‖+M1βn.

Since equation (3.14), and lim
n→∞βn = 0 guarantee that the right side of above inequality converges

to 0, we find that

lim
n→∞‖Txn − xn‖ = 0. (3.15)

Lemma 3.6. Suppose that T : H →H is nonexpansive with Fix(T) 6=∅ and Assumption 3.2
holds. Then

limsup
n→∞

〈xn − p, yn − p〉 ≤ 0 where p = PFix(T)xn.

Proof. From the limit superior of {〈xn − p, yn − p〉}∞n=0, there exists {ynk }∞n=0 such that

limsup
n→∞

〈xn − p, yn − p〉 = lim
k→∞

〈xn − p, ynk − p〉. (3.16)

Moreover, since {ynk }∞n=0 is bounded, there exists {ynki
}∞n=0 which weakly converges to some

point q ∈H . Equation (3.14), guarantees that {xnki
}∞n=0 weakly converges to q.

We shall show that q ∈ Fix(T). Assume that q ∉ Fix(T) that is q 6= Tq. Lemma 2.5, (3.15),
and the nonexpansive of T ensure that

liminf
i→∞

∥∥xnki
− q

∥∥< liminf
i→∞

∥∥xnki
−Tq

∥∥
= liminf

i→∞
∥∥xnki

−Txnki
+Txnki

−Tq
∥∥

= liminf
i→∞

∥∥Txnki
−Tq

∥∥
≤ liminf

i→∞
∥∥Txnki

− q
∥∥.
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This is a contradiction. Hence, q ∈Fix(T). Hence, (3.16), and Lemma 2.2 guarantee that

limsup
n→∞

〈xn − p, yn − p〉 = lim
k→∞

〈xn − p, ynk − p〉 = 〈xn − p, q− p〉 ≤ 0.

This completes the proof.

Theorem 3.7. Suppose that T : H → H is nonexpansive with Fix(T) 6= ∅ and that
Assumption 3.2 holds. Then the sequence {xn} generated by Algorithm 3.1 strongly converges to a
fixed point of T .

Proof. The inequality, ‖x+ y‖2 ≤ ‖x‖2 +2〈y, x− y〉(x, y ∈H ), and the nonexpansive of T imply
that, for all n ∈N,

‖yn − p‖2 = ‖Txn − p+λβndn‖
≤ ‖Txn − p‖2 +2λβn〈yn − p,dn〉
≤ ‖xn − p‖+M4α

2
n,

where βn ≤α2
n(n ∈N) and M4 := sup

n∈N
2λ|〈yn − p,dn〉| <∞ and

‖Tzn − p‖2 ≤ ‖zn − p‖2

≤ ‖γnxn + (1−γn)yn − p‖2

≤ γn‖xn − p‖2 + (1−γn)‖yn − p‖2 +2γn(1−γn)〈xn − p, yn − p〉.
We have that, for all n ∈N

‖xn+1 − p‖2 = ‖αn yn + (1−αn)Tzn − p‖2

≤αn‖yn − p‖2 + (1−αn)‖zn − p‖2 +2αn(1−αn)〈yn − p,Tzn − p〉
≤αn‖yn − p‖2 + (1−αn)‖zn − p‖2 +2αn〈yn − p, (xn+1 − p)−αn(yn − p)〉
≤αn‖yn − p‖2 + (1−αn)‖zn − p‖2 +2αn〈yn − p, xn+1 − p〉−2α2

n‖yn − p‖2

≤ (αn −2α2
n)‖yn − p‖2 + (1−αn)‖zn − p‖2 +2αn〈yn − p, xn+1 − p〉

≤ (αn −2α2
n)‖yn − p‖2 + (1−αn)γn‖xn − p‖2 + (1−αn)(1−γn)‖yn − p‖2

+2(1−αn)γn(1−γn)〈xn − p, yn − p〉+2αn〈yn − p, xn+1 − p〉
≤ (1−2α2

n −γn +αnγn)‖yn − p‖2 + (1−αn)γn‖xn − p‖2

+2(1−αn)γn(1−γn)〈xn − p, yn − p〉+2αn〈yn − p, xn+1 − p〉
≤ (1−2α2

n −γn +αnγn)‖xn − p‖2 + (1−αn)γn‖xn − p‖2

+M4(1−2α2
n −γn +αnγn)α2

n +2αn〈yn − p, xn+1 − p〉
+2(1−αn)γn(1−γn)〈xn − p, yn − p〉

≤ (1−2α2
n)‖xn − p‖2 +M4(1−2α2

n −γn +αnγn)α2
n

+2αn〈yn − p, xn+1 − p〉+2(1−αn)γn(1−γn)〈xn − p, yn − p〉. (3.17)

From Lemma 2.10, (A2) and Lemma 3.6 lead one to deduce that

lim
n→∞‖xn+1 − p‖2 = 0. (3.18)

This guarantees that {xn}∞n=0 generated by Algorithm 3.1 strongly converges to p = PFix(T)xn.
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4. Numerical Examples and Conclusion
In this section, we compare the original algorithm and the accelerated algorithm. The codes
were written in MATLAB 8.0 and run personal computer.

Firstly, we apply the S-algorithm (2.6) and Algorithm 3.1 to the following convex feasibility
problem (CFP).

Problem 4.1 (From [15]). Given a nonempty

find x∗ ∈ C :=
m⋂

i=0
Ci,

where one assume that C 6=∅. Define a mapping T :RN →RN by

T := P0

( 1
m

m∑
i=1

Pi

)
, (4.1)

where Pi = PCi (i = 0,1, . . . ,m) stands for the metric projection onto Ci . Since Pi (i = 0,1,2, . . . ,m)
is nonexpansive, T defined by (4.1) is also nonexpansive. Moreover, we find that

Fix(T)=Fix(P0)
m⋂

i=1
Fix(Pi)= C0

m⋂
i=1

Ci = C.

Set λ = 0.5,αn = 1/(n + 1),γn = 1/(2n + 1)(n ≥ 0) and βn = (3n + 1) in Algorithm 3.1 in the
S-algorithm (2.6). In the experiment, we set Ci (i = 0,1, . . . ,m) as a closed ball with center
ci ∈RN and radius r i > 0. Thus, Pi (i = 0,1, . . . ,m) can be computed with

Pi(x) :=
{

ci + r i
‖ci−x‖ (x− ci), if ‖ci − x‖ > r i,

x, if ‖ci − x‖ ≤ r i .

We set r i := 1 (i = 0,1, . . . ,m), c0 := 0 and ci ∈ (−1/
p

N,1/
p

N)N (i = 1, . . . ,m) were randomly
chosen. Set e := (1,1, . . . ,1). In Table 1, “Iter.” and “Sec.” denote the number of iterations and the
cpu time in second, respectively. We took ‖Txn − xn‖ < ε= 10−6 as the stopping criterion.

Table 1 illustrates that, with a few exceptions, Algorithm 3.1 significantly reduces the
running time and iteration needed to find a fixed point compared with the S-algorithm.
The advantage is more obvious, as the parameters N and m become larger. It is worth further
research on the reason of emergence of a few exceptions.

Table 1. Computational results for Problem 4.1 with different dimensions

Initial point rand(N,1) 200×rand(N,1) 5e 5,000e

N = 5 Algorithm 3.1 Iter 2 50 48 48
m = 5 Sec. 0.0156 0 0.0156 0

S-Iteration Iter 5158 131082 90978 64604
Sec. 0.5313 1.9219 1.7031 1.1563

N = 100 Algorithm 3.1 Iter 565 681 677 566
m = 50 Sec. 0.3750 0.4688 0.2656 0.1719

S-Iteration Iter 321565 239882 247063 248627
Sec. 71.9844 60.6406 79.2031 81.9844

N = 50 Algorithm 3.1 Iter 379 347 339 354
m = 100 Sec. 0.0781 0.0781 0.0625 0.0781

S-Iteration Iter 181627 195724 182802 181870
Sec. 31.8125 36.8438 33.9688 31.2656
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In the experiment, we compare the error (Err) values under the different number of iterations.
Figure 1, Figure 2 and Figure 3 show that, comparing with Algorithm 3.1, the S-algorithm (2.6)
has obvious advantages in computing.

Figure 1. Comparison of the number of iterations of N = 5, m = 5

Figure 2. Comparison of the number of iterations of N = 50, m = 100

Figure 3. Comparison of the number of iterations of N = 100, m = 50
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5. Conclusion
In this paper, we accelerated S-algorithm. Then we present the strong convergence of the
accelerated S-algorithm and the strong convergence under some conditions. The numerical
example illustrate that the acceleration of the S-algorithm is effective.
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