Acceleration of the Modified S-Algorithm to Search for a Fixed Point of a Nonexpansive Mapping

D. Kitkuan ${ }^{1}$, J. Zhao ${ }^{2}$, H. Zong ${ }^{2}$ and W. Kumam ${ }^{3, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
${ }^{2}$ College of Science, Civil Aviation University of China, Tianjin 300300, China
${ }^{3}$ Program in Applied Statistics, Department of Mathematics and Computer Science,
Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi, Pathumthani 12110, Thailand
*Corresponding author: wiyada.kum@rmutt.ac.th

Abstract

The purpose of this paper is to present accelerations of the S-algorithm. We first apply the Picard algorithm to the smooth convex minimization problem and point out that the Picard algorithm is the steepest descent method for solving the minimization problem. Next, we provide the accelerated Picard algorithm by using the ideas of conjugate gradient methods that accelerated the steepest descent method. Then, based on the accelerated Picard algorithm, we present accelerations of the S-algorithm. Under certain assumptions, our algorithm strongly converges to a fixed point with the S-algorithm and show that it dramatically reduces the running time and iteration needed to find a fixed point compared with that algorithm.

Keywords. Demicontractive mappings; Common fixed point
MSC. 47 H 09 ; 47H10
Received: August 24, 2018
Revised: October 5, 2018
Accepted: October 11, 2018

[^0]
1. Introduction

Let \mathscr{H} be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Suppose that $C \subset \mathscr{H}$ is nonempty, closed and convex. A mapping $T: C \rightarrow C$ is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|
$$

for al $x, y \in C$. The set of fixed point of T is defined by $\operatorname{Fix}(T):=\{x \in C: T x=x\}$.
In this paper, we consider the following fixed point problem:
Problem 1.1. Suppose that $T: C \rightarrow C$ is nonexpansive with $\operatorname{Fix}(T) \neq \varnothing$. Then

$$
\text { find } x^{*} \in C \text { such that } T x^{*}=x^{*} .
$$

The fixed point problems for nonexpansive mapping [5, 14, 18] have been investigated in many practical application, and they include convex feasibility problem, convex optimization problems, problems of finding the zeros of monotone operators, and monotone variational inequalities.

We first apply the Picard algorithm to the smooth convex mininmization problem and illustrate that the Picard algorithm is the steepest descent method [12] have been widely seen as an efficient accelerated version of most gradient methods, we introduce an accelerated Picard algorithm by combining the conjugate gradient methods and the Picard algorithm. Finally, based on the accelerated Picard algorithm, we present accelerations of the S-algorithm.

In this paper, we propose two accelerated algorithms for finding a fixed point of a nonexpansive mapping and prove the convergence of the algorithms. Finally, the numerical examples are presented to demonstrate the effectiveness and fast convergence of the accelerated S-algorithm.

2. Preliminaries

2.1 Picard Algorithm and Our Algorithm

The Picard algorithm generates the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ as follows: given $x_{0} \in \mathscr{H}$,

$$
\begin{equation*}
x_{n+1}=T x_{n}, \quad n \geq 0 . \tag{2.1}
\end{equation*}
$$

The Picard algorithm (2.1) converges to a fixed point of the mapping T if $T: C \rightarrow C$ is contraction.
When $\operatorname{Fix}(T)$ is the set of all minimizers of a convex, continuously Frechet differentiable functional f over \mathscr{H}, that algorithm (2.1) is the steepest descent method [9, 12] to minimize f over \mathscr{H}. Suppose that the gradient of f, denoted by ∇f, is Lipschitz continuous with a constant $L>0$ and define $T^{f}: \mathscr{H} \rightarrow \mathscr{H}$ by

$$
\begin{equation*}
T^{f}:=I-\lambda \nabla f, \tag{2.2}
\end{equation*}
$$

where $\lambda \in(0,2 / L)$ and $I: \mathscr{H} \rightarrow \mathscr{H}$ stands for the identity mapping. Accordingly, T^{f} satisfies the contraction condition [7] and

$$
\operatorname{Fix}\left(T^{f}\right)=\underset{x \in \mathscr{H}}{\operatorname{argmin}} f(x):=\left\{x^{*} \in \mathscr{H}: f\left(x^{*}\right)=\min _{x \in \mathscr{H}} f(x)\right\} .
$$

Therefore, algorithm (2.1) with $T:=T^{f}$ can be expressed as follows:

$$
\left\{\begin{array}{l}
d_{n+1}^{f}:=-\nabla f\left(x_{n}\right) \tag{2.3}\\
x_{n+1}:=T^{f}\left(x_{n}\right)=x_{n}-\lambda \nabla f\left(x_{n}\right)=x_{n}+\lambda d_{n+1}^{f}
\end{array}\right.
$$

The conjugate gradient methods [12] are popular acceleration methods of the steepest descent method. The conjugate gradient direction of f at $x_{n}(n \geq 0)$ is

$$
d_{n+1}^{f, C G D}:=-\nabla f\left(x_{n}\right)+\beta_{n} d_{n}^{f, C G D}
$$

where $d_{0}^{f, C G D}:=-\nabla f\left(x_{0}\right)$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty} \subset(0, \infty)$, which, together with (2.2), implies that

$$
\begin{equation*}
d_{n+1}^{f, C G D}=\frac{1}{\lambda}\left(T^{f}\left(x_{n}\right)-x_{n}\right)+\beta_{n} d_{n}^{f, C G D} . \tag{2.4}
\end{equation*}
$$

By replacing $d_{n+1}^{f}:=-\nabla f\left(x_{n}\right)$ in algorithm (2.3) with $d_{n+1}^{f, C G D}$ defined by (2.4), we get the accelerated Picard algorithm as follows:

$$
\left\{\begin{array}{l}
d_{n+1}^{f, C G D}:=\frac{1}{\lambda}\left(T^{f}\left(x_{n}\right)-x_{n}\right)+\beta_{n} d_{n}^{f, C G D} \tag{2.5}\\
x_{n+1}:=x_{n}+\lambda d_{n+1}^{f, C G D}
\end{array}\right.
$$

The convergence condition of Picard algorithm is very restrictive and if does not converges for general nonexpansive mapping [21]. So, In 2007, Agarwal, O'Regan and Sahu [1] introduced the S-iteration process

$$
\left\{\begin{array}{l}
y_{n}=\left(1-\gamma_{n}\right) x_{n}+\gamma_{n} T x_{n}, \tag{2.6}\\
x_{n+1}=\left(1-\alpha_{n}\right) T x_{n}+\alpha_{n} T y_{n}
\end{array}\right.
$$

and showed that the sequence generated by it converges to a fixed point of a nonexpansive mapping. In this paper, we combine (2.5)-(2.6) to present novel algorithm.

2.2 Some Lemmas

We will use the following notations:
Lemma 2.1 ([6]|). Suppose that $C \subset \mathscr{H}$ is nonempty, closed and convex, $T: C \rightarrow C$ is nonexpansive mapping, and $x \in \mathscr{H}$. Then $\operatorname{Fix}(T)$ is closed and convex.

Lemma 2.2 ([|3]). Suppose that $C \subset \mathscr{H}$ is nonempty, closed and convex, $T: C \rightarrow C$ is nonexpansive mapping, and $x \in \mathscr{H}$. Then $\hat{x}=P_{C} x$ if and only if $\langle x-\hat{x}, y-\hat{x}\rangle \leq 0(y \in C)$.
Lemma 2.3. Let \mathscr{H} be a real Hilbert space. There hold the following identities:
(i) $\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y, y\rangle \forall x, y \in \mathscr{H}$,
(ii) $\|t x+(1-t) y\|^{2}=t\|x\|^{2}+(1-t)\|y\|^{2}-t(1-t)\|x-y\|^{2}$.

Lemma 2.4 ([19]). Assume that $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers satisfying the property

$$
a_{n+1} \leq a_{n}+u_{n}, \quad n \geq 0,
$$

where $\left\{u_{n}\right\}$ is a sequence of nonnegative real numbers such that $\sum_{n=1}^{\infty} u_{n}<\infty$. Then $\lim _{n \rightarrow \infty} a_{n}$ exists.
Lemma 2.5 ([|3]]). Suppose that $\left\{x_{n}\right\}$ weakly converges to $x \in \mathscr{H}$ and $y \neq x$. Then

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\| .
$$

Lemma 2.6 ([2]). Let $\left\{\Psi_{n}\right\},\left\{\delta_{n}\right\}$ and $\left\{\alpha_{n}\right\}$ be the sequence in $[0,+\infty)$ such that $\Psi_{n+1} \leq$ $\Psi_{n}+\alpha_{n}\left(\Psi_{n}-\Psi_{n-1}\right)+\delta_{n}$ for each $n \geq 1, \sum_{n=1}^{\infty} \delta_{n}<+\infty$ and there exists a real number α with $0 \leq \alpha_{n} \leq \alpha<1$ for all $n \in \mathbb{N}$. Then the following conditions hold:
(1) $\sum_{n \geq 1}\left[\Psi_{n}-\Psi_{n-1}\right]_{+}<+\infty$, where $[t]_{+}=\max \{t, 0\}$;
(2) there exists $\Psi^{*} \in[0,+\infty)$ such that $\lim _{n \rightarrow+\infty} \Psi_{n}=\Psi^{*}$.

Lemma 2.7 ([3]). Let D be a nonempty closed convex subset of \mathscr{H} and $T: D \rightarrow \mathscr{H}$ be a nonexpansive mapping. Let $\left\{x_{n}\right\}$ be a sequence in D and $x \in \mathscr{H}$ such that $x_{n}-x$ and $T x_{n}-x_{n} \rightarrow 0$ as $n \rightarrow+\infty$. Then $x \in \operatorname{Fix}(T)$.

Lemma 2.8 ([|3]). Let C be a nonempty subset of \mathscr{H} and $\left\{x_{n}\right\}$ be a sequence in \mathscr{H} such that the following two condition hold:
(1) for all $x \in C, \lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ exists;
(2) every sequential weak cluster point of $\left\{x_{n}\right\}$ is in C.

Then the sequence $\left\{x_{n}\right\}$ converges weakly to a point in C.
Lemma 2.9 ([17]). Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space Xand let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$. Suppose $x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for all integers $n \geq 0$ and $\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$. Then, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

Lemma 2.10 ([20]). Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\delta_{n}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence in \mathbb{R} such that
(1) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(2) $\limsup _{n \rightarrow \infty} \frac{\delta_{n}}{\alpha_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then, $\lim _{n \rightarrow \infty} a_{n}=0$.

3. Main Results

In this section, we present the accelerated S-algorithm and give its convergence.

Algorithm 3.1.

Step 0: Choose $\lambda>0$ and $x_{0} \in \mathscr{H}$ arbitrarily and set $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}} \subset(0,1),\left\{\gamma_{n}\right\}_{n \in \mathbb{N}} \subset(0,1)$, $\left\{\beta_{n}\right\}_{n \in \mathbb{N}} \subset[0, \infty)$. Compute $d_{0}:=\left(T x_{0}-x_{0}\right) / \alpha$.
Step 1: Given $x_{n}, d_{n} \in \mathscr{H}$, compute $d_{n+1} \in \mathscr{H}$ by

$$
d_{n+1}:=\frac{1}{\lambda}\left(T x_{n}-x_{n}\right)+\beta_{n} d_{n} .
$$

Step 2: Compute $x_{n+1} \in \mathscr{H}$ as follows

$$
\left\{\begin{array}{l}
y_{n}=x_{n}+\lambda d_{n+1}, \\
z_{n}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) y_{n}, \\
x_{n+1}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T z_{n} .
\end{array}\right.
$$

Step 3: Put $n:=n+1$, and go to Step 1 .

We can check that Algorithm 3.1 coincides with the S-algorithm (2.6) when $\beta_{n}:=0(n \in \mathbb{N})$. In this section, we make the following assumption:

Assumption 3.2. The sequence $\left\{\beta_{n}\right\}_{n=0}^{\infty},\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ satisfy
(A1) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(A2) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1$;
(A3) $\sum_{n=0}^{\infty} \beta_{n}<\infty$ and $\beta_{n} \leq \alpha_{n}^{2}$;
(A4) $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ and $\sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$.
Before doing the convergence analysis of Algorithm 3.1, we first show the four lemmas:
Lemma 3.3. Suppose that $T: \mathscr{H} \rightarrow \mathscr{H}$ is nonexpansive with $\operatorname{Fix}(T) \neq \varnothing$ and that Assumption 3.2 holds. Then $\left\{d_{n}\right\}_{n=0}^{\infty},\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ are bounded.

Proof. We have from (A3) that $\lim _{n \rightarrow \infty} \beta_{n}=0$. Accordingly, there exists $n_{0} \in \mathbb{N}$ such that $\beta_{n} \leq \frac{1}{2}$ for all $n \geq n_{0}$. Define

$$
M_{1}=\max \left\{\max _{1 \leq k \leq n_{0}}\left\|d_{k}\right\|,(2 / \lambda) \sup _{n \in \mathbb{N}}\left\|T x_{n}-x_{n}\right\|\right\}
$$

Then (A3) implies that $M_{1}<\infty$. Assume that $\left\|d_{n}\right\| \leq M_{1}$ for some $n \geq n_{0}$. The triangle inequality ensure that

$$
\begin{aligned}
\left\|d_{n+1}\right\| & =\left\|\frac{1}{\lambda}\left(T x_{n}-x_{n}\right)+\beta_{n} d_{n}\right\| \\
& \leq \frac{1}{\lambda}\left\|T x_{n}-x_{n}\right\|+\beta_{n}\left\|d_{n}\right\| \\
& \leq M_{1}
\end{aligned}
$$

which means that $\left\|d_{n}\right\| \leq M_{1}$ for all $n \geq 0$, i.e., $\left\{d_{n}\right\}_{n=0}^{\infty}$ is bounded. The definition of $\left\{y_{n}\right\}_{n=0}^{\infty}$ implies that

$$
\begin{align*}
y_{n} & =x_{n}+\lambda\left(\frac{1}{\lambda}\left(T x_{n}-x_{n}\right)+\beta_{n} d_{n}\right) \\
& =T x_{n}+\lambda \beta_{n} d_{n} . \tag{3.1}
\end{align*}
$$

The nonexpansive of T and (3.1) implies that, for any $p \in \operatorname{Fix}(T)$ and for all $n \geq n_{0}$,

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\left\|T x_{n}+\lambda \beta_{n} d_{n}-p\right\| \\
& \leq\left\|T x_{n}-p\right\|+\lambda \beta_{n}\left\|d_{n}\right\| \\
& \leq\left\|x_{n}-p\right\|+\lambda M_{1} \beta_{n} \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
\left\|z_{n}-p\right\| & =\left\|\gamma_{n} x_{n}-\left(1-\gamma_{n}\right) y_{n}-p\right\| \\
& =\left\|\gamma_{n}\left(x_{n}-p\right)+\left(1-\gamma_{n}\right)\left(y_{n}-p\right)\right\| \\
& \leq \gamma_{n}\left\|x_{n}-p\right\|+\left(1-\gamma_{n}\right)\left\|y_{n}-p\right\| . \tag{3.3}
\end{align*}
$$

Therefore, we find

$$
\begin{align*}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T z_{n}-p\right\| \\
& =\left\|\alpha_{n}\left(y_{n}-p\right)+\left(1-\alpha_{n}\right)\left(T z_{n}-p\right)\right\| \\
& \leq \alpha_{n}\left\|y_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\| \\
& \leq \alpha_{n}\left\|y_{n}-p\right\|+\left(1-\alpha_{n}\right) \gamma_{n}\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right)\left\|y_{n}-p\right\| \\
& \left.\leq\left(1-\left(1-\alpha_{n}\right) \gamma_{n}\right)\right)\left\|y_{n}-p\right\|+\left(1-\alpha_{n}\right) \gamma_{n}\left\|x_{n}-p\right\| \\
& \left.\leq\left(1-\alpha_{n}\right) \gamma_{n}\left\|x_{n}-p\right\|+\left(1-\left(1-\alpha_{n}\right) \gamma_{n}\right)\right)\left(\left\|x_{n}-p\right\|+\lambda M_{1} \beta_{n}\right) \\
& \leq\left\|x_{n}-p\right\|+\lambda M_{1} \beta_{n} \tag{3.4}
\end{align*}
$$

which implies

$$
\left\|x_{n}-p\right\| \leq\left\|x_{0}-p\right\|+\lambda M_{1} \sum_{n=0}^{n-1} \beta_{k}<\infty .
$$

So, we get that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is bounded. From (3.2) and (3.3) it follows that $\left\{y_{n}\right\}_{n=0}^{\infty}$ and $\left\{z_{n}\right\}_{n=0}^{\infty}$ are bounded.

In addition, using Lemma 2.4, (A3) and (3.4), we obtain $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists.
Lemma 3.4. Suppose that $T: \mathscr{H} \rightarrow \mathscr{H}$ is nonexpansive with $\mathrm{Fix}(T) \neq \varnothing$ and Assumption 3.2 holds. Then

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

Proof. Equation (3.1), the triangle inequality, and the nonexpansive of T imply that, for all $n \in \mathbb{N}$,

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\| & =\left\|T x_{n+1}-T x_{n}+\lambda\left(\beta_{n+1} d_{n_{1}}-\beta_{n} d_{n}\right)\right\| \\
& \leq\left\|T x_{n+1}-T x_{n}\right\|+\lambda\left\|\beta_{n+1} d_{n_{1}}-\beta_{n} d_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\lambda\left(\beta_{n+1}\left\|d_{n_{1}}\right\|-\beta_{n}\left\|d_{n}\right\|\right)
\end{aligned}
$$

which, together with $\left\|d_{n}\right\| \leq M_{1}\left(n \geq n_{0}\right)$ and (A3), implies that, for all $n \geq n_{0}$,

$$
\begin{equation*}
\left\|y_{n+1}-y_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\lambda M_{1}\left(\alpha_{n+1}^{2}+\alpha_{n}^{2}\right) . \tag{3.5}
\end{equation*}
$$

On the other hand, from $\alpha_{n} \leq\left|\alpha_{n+1}-\alpha_{n}\right| \leq \alpha_{n+1}$ and $\alpha_{n}<1(n \in \mathbb{N})$, we have that, for all $n \in \mathbb{N}$,

$$
\begin{align*}
\alpha_{n+1}^{2}+\alpha_{n}^{2} & \leq \alpha_{n+1}^{2}+\alpha_{n}\left(\left|\alpha_{n+1}-\alpha_{n}\right|+\alpha_{n+1}\right) \\
& \leq\left(\alpha_{n+1}+\alpha_{n}\right) \alpha_{n+1}+\left|\alpha_{n+1}-\alpha_{n}\right| . \tag{3.6}
\end{align*}
$$

Next, by Algorithm 3.1, the triangle inequality, and the nonexpansive of T imply that, for all $n \in \mathbb{N}$,

$$
\begin{align*}
\left\|z_{n+1}-z_{n}\right\|= & \left\|\gamma_{n+1} x_{n+1}+\left(1-\gamma_{n+1}\right) T y_{n+1}-\gamma_{n} x_{n}-\left(1-\gamma_{n}\right) T y_{n}\right\| \\
= & \| \gamma_{n+1} x_{n+1}-\gamma_{n+1} x_{n}+\gamma_{n+1} x_{n}+\left(1-\gamma_{n+1}\right) T y_{n+1} \\
& -\left(1-\gamma_{n+1}\right) T y_{n}+\left(1-\gamma_{n+1}\right) T y_{n}-\gamma_{n} x_{n}-\left(1-\gamma_{n}\right) T y_{n} \| \\
\leq & \gamma_{n+1}\left\|x_{n+1}-x_{n}\right\|+\left(1-\gamma_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|+\left|\gamma_{n+1}-\gamma_{n}\right|\left\|x_{n}\right\|+\left|\gamma_{n+1}-\gamma_{n}\right|\left\|y_{n}\right\| \\
= & \gamma_{n+1}\left\|x_{n+1}-x_{n}\right\|+\left(1-\gamma_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|+\left|\gamma_{n+1}-\gamma_{n}\right|\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right) \\
\leq & \gamma_{n+1}\left\|x_{n+1}-x_{n}\right\|+\left(1-\gamma_{n+1}\right)\left\|y_{n+1}-y_{n}\right\|+M_{2}\left|\gamma_{n+1}-\gamma_{n}\right| \tag{3.7}
\end{align*}
$$

which $M_{2}:=\sup _{n \in \mathbb{N}}\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right)<\infty$.

Setting $x_{n+1}=\left(1-\beta_{n}\right) w_{n}+\beta_{n} x_{n}$ for all $n \geq 0$, we see that $w_{n}=\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}$, then

$$
\begin{align*}
\left\|w_{n+1}-w_{n}\right\|= & \left\|\frac{x_{n+1}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}\right\| \\
= & \| \frac{1}{1-\beta_{n+1}}\left(\alpha_{n+1} y_{n+1}-\left(1-\alpha_{n+1}\right) T z_{n+1}-\beta_{n+1}\left(\alpha_{n} y_{n}-\left(1-\alpha_{n}\right) T z_{n}\right)\right) \\
& -\frac{1}{1-\beta_{n}}\left(\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T z_{n}+\beta_{n} x_{n}\right) \| \\
= & \| \frac{1}{1-\beta_{n+1}}\left(\alpha_{n+1} y_{n+1}-\alpha_{n+1} y_{n}+\alpha_{n+1} y_{n}-\left(1-\alpha_{n+1}\right) T z_{n+1}\right. \\
& \left.+\left(1-\alpha_{n+1}\right) T z_{n}-\left(1-\alpha_{n+1}\right) T z_{n}-\beta_{n+1}\left(\alpha_{n} y_{n}-\left(1-\alpha_{n}\right) T z_{n}\right)\right) \\
& -\frac{1}{1-\beta_{n}}\left(\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T z_{n}+\beta_{n} x_{n}\right) \| \\
\leq & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left\|y_{n+1}-y_{n}\right\|+\frac{\left(1-\alpha_{n+1}\right)}{1-\beta_{n+1}}\left\|z_{n+1}-z_{n}\right\| \\
& +\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} \beta_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n+1}}\right|\left\|y_{n}\right\| \\
& +\left|\frac{\left(1-\alpha_{n+1}\right)}{1-\beta_{n+1}}-\frac{\left(1-\alpha_{n}\right) \beta_{n+1}}{1-\beta_{n+1}}-\frac{\left(1-\alpha_{n}\right)}{1-\beta_{n+1}}\right|\left\|T z_{n}\right\|+\frac{\beta_{n}}{1-\beta_{n}}\left\|x_{n}\right\| \tag{3.8}
\end{align*}
$$

From (3.5) and (3.7), we have

$$
\begin{align*}
\left\|w_{n+1}-w_{n}\right\| \leq & \frac{\beta_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\|+\left\|x_{n+1}-x_{n}\right\| \\
& +\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} \beta_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n+1}}\right|\left\|y_{n}\right\| \\
& +\left|\frac{\left(1-\alpha_{n+1}\right)}{1-\beta_{n+1}}-\frac{\left(1-\alpha_{n}\right) \beta_{n+1}}{1-\beta_{n+1}}-\frac{\left(1-\alpha_{n}\right)}{1-\beta_{n+1}}\right|\left\|T z_{n}\right\|+\frac{\beta_{n}}{1-\beta_{n}}\left\|x_{n}\right\| \\
& +\lambda M_{1}\left(1-\left(1-\alpha_{n+1}\right) \gamma_{n+1}\right)\left(\left(\alpha_{n+1}-\alpha_{n}\right) \alpha_{n+1}+\left|\alpha_{n+1}-\alpha_{n}\right|\right) . \tag{3.9}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\left\|w_{n+1}-w_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq & \frac{\beta_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\| \\
& +\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} \beta_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n+1}}\right|\left\|y_{n}\right\| \\
& +\left|\frac{\left(1-\alpha_{n+1}\right)}{1-\beta_{n+1}}-\frac{\left(1-\alpha_{n}\right) \beta_{n+1}}{1-\beta_{n+1}}-\frac{\left(1-\alpha_{n}\right)}{1-\beta_{n+1}}\right|\left\|T z_{n}\right\|+\frac{\beta_{n}}{1-\beta_{n}}\left\|x_{n}\right\| \\
& +\lambda M_{1}\left(1-\left(1-\alpha_{n+1}\right) \gamma_{n+1}\right)\left(\left(\alpha_{n+1}-\alpha_{n}\right) \alpha_{n+1}+\left|\alpha_{n+1}-\alpha_{n}\right|\right) . \tag{3.10}
\end{align*}
$$

It follows from the condition (A1), (A2) and (A4), that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\left\|w_{n+1}-w_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0 \tag{3.11}
\end{equation*}
$$

Applying Lemma 2.9, we obtain $\lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0$ and we also have

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\|=\left(1-\beta_{n}\right)\left\|w_{n}-x_{n}\right\| \rightarrow 0, n \rightarrow \infty . \tag{3.12}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

Lemma 3.5. Suppose that $T: \mathscr{H} \rightarrow \mathscr{H}$ is nonexpansive with $\mathrm{Fix}(T) \neq \varnothing$ and Assumption 3.2 holds. Then

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0 .
$$

Proof. By Algorithm 3.1, and the nonexpansive of T, we have for all $n \in \mathbb{N}$

$$
\begin{aligned}
\left\|x_{n+1}-y_{n}\right\| & =\left\|\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T z_{n}-y_{n}\right\| \\
& =\left(1-\alpha_{n}\right)\left\|T z_{n}-y_{n}\right\| \\
& \leq\left(1-\alpha_{n}\right) M_{3}
\end{aligned}
$$

by (A1) means that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=0$. Since the triangle inequality ensures that

$$
\left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\|
$$

for all $n \in \mathbb{N}$, we find from (3.13) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|d_{n+1}\right\|=\frac{1}{\lambda} \lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0 . \tag{3.14}
\end{equation*}
$$

From the definition of $d_{n+1}(n \in \mathbb{N})$, we have, for all $n \geq n_{0}$,

$$
0 \leq \frac{1}{\lambda}\left\|T x_{n}-x_{n}\right\| \leq\left\|d_{n+1}\right\|+\beta_{n}\left\|d_{n}\right\| \leq\left\|d_{n+1}\right\|+M_{1} \beta_{n} .
$$

Since equation (3.14), and $\lim _{n \rightarrow \infty} \beta_{n}=0$ guarantee that the right side of above inequality converges to 0 , we find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T x_{n}-x_{n}\right\|=0 \tag{3.15}
\end{equation*}
$$

Lemma 3.6. Suppose that $T: \mathscr{H} \rightarrow \mathscr{H}$ is nonexpansive with $\operatorname{Fix}(T) \neq \varnothing$ and Assumption 3.2 holds. Then

$$
\limsup _{n \rightarrow \infty}\left\langle x_{n}-p, y_{n}-p\right\rangle \leq 0 \quad \text { where } p=P_{\mathrm{Fix}(T)} x_{n} .
$$

Proof. From the limit superior of $\left\{\left\langle x_{n}-p, y_{n}-p\right\rangle\right\}_{n=0}^{\infty}$, there exists $\left\{y_{n_{k}}\right\}_{n=0}^{\infty}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle x_{n}-p, y_{n}-p\right\rangle=\lim _{k \rightarrow \infty}\left\langle x_{n}-p, y_{n_{k}}-p\right\rangle . \tag{3.16}
\end{equation*}
$$

Moreover, since $\left\{y_{n_{k}}\right\}_{n=0}^{\infty}$ is bounded, there exists $\left\{y_{n_{k_{i}}}\right\}_{n=0}^{\infty}$ which weakly converges to some point $q \in \mathscr{H}$. Equation (3.14), guarantees that $\left\{x_{n_{k_{i}}}\right\}_{n=0}^{\infty}$ weakly converges to q.

We shall show that $q \in \operatorname{Fix}(T)$. Assume that $q \notin \operatorname{Fix}(T)$ that is $q \neq T q$. Lemma 2.5, (3.15), and the nonexpansive of T ensure that

$$
\begin{aligned}
\liminf _{i \rightarrow \infty}\left\|x_{n_{k_{i}}}-q\right\| & <\liminf _{i \rightarrow \infty}\left\|x_{n_{k_{i}}}-T q\right\| \\
& =\liminf _{i \rightarrow \infty}\left\|x_{n_{k_{i}}}-T x_{n_{k_{i}}}+T x_{n_{k_{i}}}-T q\right\| \\
& =\liminf _{i \rightarrow \infty}\left\|T x_{n_{k_{i}}}-T q\right\| \\
& \leq \liminf _{i \rightarrow \infty}\left\|T x_{n_{k_{i}}}-q\right\| .
\end{aligned}
$$

This is a contradiction. Hence, $q \in \operatorname{Fix}(T)$. Hence, (3.16), and Lemma 2.2 guarantee that

$$
\limsup _{n \rightarrow \infty}\left\langle x_{n}-p, y_{n}-p\right\rangle=\lim _{k \rightarrow \infty}\left\langle x_{n}-p, y_{n_{k}}-p\right\rangle=\left\langle x_{n}-p, q-p\right\rangle \leq 0 .
$$

This completes the proof.
Theorem 3.7. Suppose that $T: \mathscr{H} \rightarrow \mathscr{H}$ is nonexpansive with $\operatorname{Fix}(T) \neq \varnothing$ and that Assumption 3.2 holds. Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm 3.1 strongly converges to a fixed point of T.

Proof. The inequality, $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x-y\rangle(x, y \in \mathscr{H})$, and the nonexpansive of T imply that, for all $n \in \mathbb{N}$,

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2} & =\left\|T x_{n}-p+\lambda \beta_{n} d_{n}\right\| \\
& \leq\left\|T x_{n}-p\right\|^{2}+2 \lambda \beta_{n}\left\langle y_{n}-p, d_{n}\right\rangle \\
& \leq\left\|x_{n}-p\right\|+M_{4} \alpha_{n}^{2},
\end{aligned}
$$

where $\beta_{n} \leq \alpha_{n}^{2}(n \in \mathbb{N})$ and $M_{4}:=\sup _{n \in \mathbb{N}} 2 \lambda\left|\left\langle y_{n}-p, d_{n}\right\rangle\right|<\infty$ and

$$
\begin{aligned}
\left\|T z_{n}-p\right\|^{2} & \leq\left\|z_{n}-p\right\|^{2} \\
& \leq\left\|\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) y_{n}-p\right\|^{2} \\
& \leq \gamma_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\gamma_{n}\right)\left\|y_{n}-p\right\|^{2}+2 \gamma_{n}\left(1-\gamma_{n}\right)\left\langle x_{n}-p, y_{n}-p\right\rangle .
\end{aligned}
$$

We have that, for all $n \in \mathbb{N}$

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T z_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|y_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2}+2 \alpha_{n}\left(1-\alpha_{n}\right)\left\langle y_{n}-p, T z_{n}-p\right\rangle \\
\leq & \alpha_{n}\left\|y_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle y_{n}-p,\left(x_{n+1}-p\right)-\alpha_{n}\left(y_{n}-p\right)\right\rangle \\
\leq & \alpha_{n}\left\|y_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle y_{n}-p, x_{n+1}-p\right\rangle-2 \alpha_{n}^{2}\left\|y_{n}-p\right\|^{2} \\
\leq & \left(\alpha_{n}-2 \alpha_{n}^{2}\right)\left\|y_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|z_{n}-p\right\|^{2}+2 \alpha_{n}\left\langle y_{n}-p, x_{n+1}-p\right\rangle \\
\leq & \left(\alpha_{n}-2 \alpha_{n}^{2}\right)\left\|y_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right) \gamma_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left(1-\gamma_{n}\right)\left\|y_{n}-p\right\|^{2} \\
& +2\left(1-\alpha_{n}\right) \gamma_{n}\left(1-\gamma_{n}\right)\left\langle x_{n}-p, y_{n}-p\right\rangle+2 \alpha_{n}\left\langle y_{n}-p, x_{n+1}-p\right\rangle \\
\leq & \left(1-2 \alpha_{n}^{2}-\gamma_{n}+\alpha_{n} \gamma_{n}\right)\left\|y_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right) \gamma_{n}\left\|x_{n}-p\right\|^{2} \\
& +2\left(1-\alpha_{n}\right) \gamma_{n}\left(1-\gamma_{n}\right)\left\langle x_{n}-p, y_{n}-p\right\rangle+2 \alpha_{n}\left\langle y_{n}-p, x_{n+1}-p\right\rangle \\
\leq & \left(1-2 \alpha_{n}^{2}-\gamma_{n}+\alpha_{n} \gamma_{n}\right)\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right) \gamma_{n}\left\|x_{n}-p\right\|^{2} \\
& +M_{4}\left(1-2 \alpha_{n}^{2}-\gamma_{n}+\alpha_{n} \gamma_{n}\right) \alpha_{n}^{2}+2 \alpha_{n}\left\langle y_{n}-p, x_{n+1}-p\right\rangle \\
& +2\left(1-\alpha_{n}\right) \gamma_{n}\left(1-\gamma_{n}\right)\left\langle x_{n}-p, y_{n}-p\right\rangle \\
\leq & \left(1-2 \alpha_{n}^{2}\right)\left\|x_{n}-p\right\|^{2}+M_{4}\left(1-2 \alpha_{n}^{2}-\gamma_{n}+\alpha_{n} \gamma_{n}\right) \alpha_{n}^{2} \\
& +2 \alpha_{n}\left\langle y_{n}-p, x_{n+1}-p\right\rangle+2\left(1-\alpha_{n}\right) \gamma_{n}\left(1-\gamma_{n}\right)\left\langle x_{n}-p, y_{n}-p\right\rangle . \tag{3.17}
\end{align*}
$$

From Lemma 2.10, (A2) and Lemma 3.6 lead one to deduce that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-p\right\|^{2}=0 \tag{3.18}
\end{equation*}
$$

This guarantees that $\left\{x_{n}\right\}_{n=0}^{\infty}$ generated by Algorithm 3.1 strongly converges to $p=P_{\text {Fix }(T)} x_{n}$.

4. Numerical Examples and Conclusion

In this section, we compare the original algorithm and the accelerated algorithm. The codes were written in MATLAB 8.0 and run personal computer.

Firstly, we apply the S-algorithm (2.6) and Algorithm 3.1 to the following convex feasibility problem (CFP).
Problem 4.1 (From [15]). Given a nonempty

$$
\text { find } x^{*} \in C:=\bigcap_{i=0}^{m} C_{i} \text {, }
$$

where one assume that $C \neq \varnothing$. Define a mapping $T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ by

$$
\begin{equation*}
T:=P_{0}\left(\frac{1}{m} \sum_{i=1}^{m} P_{i}\right) \tag{4.1}
\end{equation*}
$$

where $P_{i}=P_{C_{i}}(i=0,1, \ldots, m)$ stands for the metric projection onto C_{i}. Since $P_{i}(i=0,1,2, \ldots, m)$ is nonexpansive, T defined by (4.1) is also nonexpansive. Moreover, we find that

$$
\operatorname{Fix}(T)=\operatorname{Fix}\left(P_{0}\right) \bigcap_{i=1}^{m} \operatorname{Fix}\left(P_{i}\right)=C_{0} \bigcap_{i=1}^{m} C_{i}=C .
$$

Set $\lambda=0.5, \alpha_{n}=1 /(n+1), \gamma_{n}=1 /(2 n+1)(n \geq 0)$ and $\beta_{n}=(3 n+1)$ in Algorithm 3.1 in the S-algorithm (2.6). In the experiment, we set $C_{i}(i=0,1, \ldots, m)$ as a closed ball with center $c_{i} \in \mathbb{R}^{N}$ and radius $r_{i}>0$. Thus, $P_{i}(i=0,1, \ldots, m)$ can be computed with

$$
P_{i}(x):= \begin{cases}c_{i}+\frac{r_{i}}{\left\|c_{i}-x\right\|}\left(x-c_{i}\right), & \text { if }\left\|c_{i}-x\right\|>r_{i} \\ x, & \text { if }\left\|c_{i}-x\right\| \leq r_{i}\end{cases}
$$

We set $r_{i}:=1(i=0,1, \ldots, m), c_{0}:=0$ and $c_{i} \in(-1 / \sqrt{N}, 1 / \sqrt{N})^{N}(i=1, \ldots, m)$ were randomly chosen. Set $e:=(1,1, \ldots, 1)$. In Table 1, "Iter." and "Sec." denote the number of iterations and the cpu time in second, respectively. We took $\left\|T x_{n}-x_{n}\right\|<\epsilon=10^{-6}$ as the stopping criterion.

Table 1 illustrates that, with a few exceptions, Algorithm 3.1 significantly reduces the running time and iteration needed to find a fixed point compared with the S-algorithm. The advantage is more obvious, as the parameters N and m become larger. It is worth further research on the reason of emergence of a few exceptions.

Table 1. Computational results for Problem 4.1 with different dimensions

	Initial point		$\operatorname{rand}(N, 1)$	$200 \times \operatorname{rand}(N, 1)$	5 e	
$N=5$	Algorithm 3.1	Iter	2	50	48	48
$m=5$		Sec.	0.0156	0	0.0156	0
	S-Iteration	Iter	5158	131082	90978	64604
		Sec.	0.5313	1.9219	681	1.7031
$N=100$	Algorithm 3.1	Iter	565	0.4688	677	566
$m=50$		Sec.	0.3750	239882	0.2656	0.1719
	S-Iteration	Iter	321565	60.6406	247063	248627
		Sec.	71.9844	347	79.2031	81.9844
$N=50$	Algorithm 3.1	Iter	379	0.0781	339	354
$m=100$		Sec.	0.0781	195724	0.0625	0.0781
		Iter	181627	36.8438	182802	181870
		Sec.	31.8125		33.9688	

In the experiment, we compare the error (Err) values under the different number of iterations. Figure 1, Figure 2 and Figure 3 show that, comparing with Algorithm 3.1, the S-algorithm (2.6) has obvious advantages in computing.

Figure 1. Comparison of the number of iterations of $N=5, m=5$

Figure 2. Comparison of the number of iterations of $N=50, m=100$

Figure 3. Comparison of the number of iterations of $N=100, m=50$

5. Conclusion

In this paper, we accelerated S-algorithm. Then we present the strong convergence of the accelerated S-algorithm and the strong convergence under some conditions. The numerical example illustrate that the acceleration of the S-algorithm is effective.

Acknowledgements

This work was financial supported by the Rajamangala University of Technology Thanyaburi (RMUTT).

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

[1] R. P. Agarwal, D. O'Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8(1) (2007), 61 - 79, DOI: $10.1016 / 0022-247 \mathrm{X}(91) 90245-\mathrm{U}$.
[2] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim. 14 (2004), 773 - 782, DOI: 10.1137/S1052623403427859,
[3] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer (2011), DOI: 10.1007/978-3-319-48311-5
[4] R. I. Boţ, E. R. Csetnek and C. Hendrich, Inertial Douglas-Rachford splitting for monotone inclusion problems, Appl. Math. Comput. 256 (2015), 472 - 487, DOI: 10.1016/j.amc.2015.01.017.
[5] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Dekker, New York (1984), DOI: 10.1112/blms/17.3.293.
[6] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1990), DOI: 10.1017/CBO9780511526152.
[7] H. Iiduka, Iterative algorithm for solving triple-hierarchical constrained optimization problem, J. Optim. Theory Appl. 148 (2011), 580 - 592, DOI: 10.1007/s10957-010-9769-z.
[8] M. A. Krasnoselski, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk. 10 (1955), 123 - 127, DOI: 10.1016/S0076-5392(08)61895-0.
[9] P. Kumam, Strong convergence theorems by an extra gradient method for solving variational inequalities and equilibrium problems in a Hilbert space, Turkish Journal of Mathematics 33(1) (2009), 85 - 98, DOI: $10.3906 /$ mat-0804-11.
[10] W. R. Mann, Mean value methods in iteration, Bull. Amer. Math. Soc. 4 (1953), 506-510, DOI: 10.2307/2032162.
[11] A. Mouad and B. S. Thakur, Solving proximal split feasibility problems without prior knowledge of operator norms, Optim. Lett. 8(7) (2014), 2099-2110, DOI: 10.1007/s11590-013-0708-4.

Communications in Mathematics and Applications, Vol. 10, No. 2, pp. 231,243, 2019
[12] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition, Springer Series in Operations Research and Financial Engineering, Springer, Berlin (2006).
[13] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bulletin of the American Mathematical Society 73 (1967), 591 - 597, DOI: 10.1090/S0002-9904-1967-11761-0.
[14] S. Plubtieng and P. Kumam, Weak convergence theorem for monotone mappings and a countable family of nonexpansive mappings, J. Comput. Appl. Math. 224 (2009), 614 - 621, DOI: 10.1016/j.cam.2008.05.045.
[15] K. Sakurai and H. Liduka, Acceleration of the Halpern algorithm to search for a fixed point of a nonexpansive mapping, Fixed Point Theory Appl. 2014 (2014), 202, DOI: 10.1186/1687-1812-2014202.
[16] Y. Shehu, G. Cai and O. S. Iyiola, Iterative approximation of solutions for proximal split feasibility problems, Fixed Point Theory Appl. 2015 (2015), 123, DOI: 10.1186/s13663-015-0375-5.
[17] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305(1) (2005), 227 - 239, DOI: 10.1016/j.jmaa.2004.11.017.
[18] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama (2000).
[19] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301 - 308, DOI: 10.1006/jmaa.1993.1309.
[20] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279 - 291, DOI: 10.1016/j.jmaa.2004.04.059.
[21] Y. Yao, G. Marino and L. Muglia, A modified Korpelevich's method convergent to the minimum-norm solution of a variational inequality, Optimization 63(4) (2012), 1 - 11, DOI: 10.1080/02331934.2012.674947.
[22] Z. Yao, S. Y. Cho, S. M. Kang and L.-J. Zhu, A regularized algorithm for the proximal split feasibility problem, Abstract Appl. Anal. 2014 (2014), Article ID 894272, 6 pages, DOI: 10.1155/2014/894272.
[23] Y. Yao, Z. Yao, A. A. Abdou and Y. J. Cho, Self-adaptive algorithms for proximal split feasibility problems and strong convergence analysis, Fixed Point Theory Appl. 2015(2015), 205, DOI: 10.1186/s13663-015-0462-7.

[^0]: Copyright © 2019 D. Kitkuan, J. Zhao, H. Zong and W. Kumam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

