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1. Introduction and Preliminaries
The concept of complex valued metric space was introduced by Azam et al. [1], proving some
fixed point results for mappings satisfying a rational inequality in complex valued metric spaces.
Afterwards, several papers have dealt with fixed point theory in complex valued metric spaces
(see [3], [4], [6] and references therein).

Recently, Sintunavarat et al. [7] introduced the notion of a C-cauchy sequence in C-complete
complex valued metric space and established the existence of common fixed point theorems in
C-complete complex valued metric spaces. In sequel, Kumar et al. [5] proved common fixed point
theorems for weakly compatible maps, weakly compatible along with (CLR) and E.A. Properties
in C-complete complex valued metric spaces.
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The aim of this paper is to establish and prove common fixed point theorems for a pair of
mappings satisfying rational expressions having control functions as coefficients in C-complete
complex valued metric spaces. Our results generalize and extend the results of Dubey et al. [2],
Kumar et al. [5], and Sintunavarat et al. [7].

Consistent with Azam et al. [1], the following definitions and results will be needed in the
sequel. Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order 4 on C as
follows:
z1 4 z2 if and only if Re(z1)≤Re(z2) and Im (z1)≤ Im (z2), that is z1 4 z2 if one of the following
holds:

(C1) Re (z1)=Re(z2) and Im (z1)= Im (z2) ;

(C2) Re (z1)<Re(z2) and Im (z1)= Im (z2);

(C3) Re (z1)=Re(z2) and Im (z1)< Im (z2);

(C4) Re (z1)<Re(z2) and Im (z1)< Im (z2) .

In particular, we will write z1 � z2 if z1 6= z2 and one of (C2), (C3) and (C4) is satisfied and we
will write z1 ≺ z2 if only (C4) is satisfied.

Remark 1.1. We note that the following statements hold:

(i) a,b ∈R and a ≤ b =⇒ az 4 bz ∀ z ∈C.

(ii) 04 z1 � z2 =⇒ |z1| < |z2|.
(iii) z1 4 z2 and z2 ≺ z3 =⇒ z1 ≺ z3.

Definition 1.2 ([1]). Let X be a nonempty set. Suppose that the mapping d : X ×X →C satisfies
the following conditions;

(d1) 04 d(x, y) for all x, y ∈ X and d(x, y)= 0 if and only if x = y;

(d2) d(x, y)= d(y, x) for all x, y ∈ X ;

(d3) d(x, y)4 d(x, z)+d(z, y) for all x, y, z ∈ X .

Then d is called a complex valued metric on X and (X ,d) is called a complex valued metric
space.

Example 1.3. Let X =C. Define the mapping d : X × X →C by

d (z1, z2)= |x1 − x2|+ i |y1 − y2| ,
where z1 = x1 + i y1 and z2 = x2 + i y2. Then (X ,d) is a complex-valued metric space.

Definition 1.4 ([1]). Let (X ,d) be a complex valued metric space.

(1) A point x ∈ X is called an interior point of a set A ⊆ X whenever there exists 0 ≺ r ∈ C
such that B (x, r)= {y ∈ X : d(x, y)≺ r}⊆ A.

(2) A point x ∈ X is called a limit point of A whenever, for all 0≺ r ∈C,

B (x, r)∩ (A− {x}) 6=φ.

(3) A set A ⊆ X is called open set whenever each element of A is an interior point of A.
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(4) A set A ⊆ X is called closed set whenever each limit point of A belongs to A.

(5) A sub-basis for a Hausdorff topology τ on X is the family

F = {B (x, r) : x ∈ X and 0≺ r} .

Definition 1.5 ([1]). Let (X ,d) be a complex valued metric space, {xn} be a sequence in X and
let x ∈ X .

(1) If for any c ∈ C with 0 ≺ c, there exists N ∈N such that for all n > N , d (xn, x) ≺ c, then
{xn} is said to be convergent to a point x ∈ X or {xn}converges to a point x ∈ X and x is the
limit point of {xn}. We denote this by lim

n→∞xn = x or xn → x as n →∞.

(2) If for any c ∈ C with 0 ≺ c, there exists N ∈ N such that for all n > N , d (xn, xn+m) ≺ c,
where m ∈N, then {xn} is called a Cauchy sequence in X .

(3) If for every Cauchy sequence in X is convergent, then (X ,d) is said to be complete complex
valued metric space.

Lemma 1.6 ([1]). Let (X ,d) be a complex valued metric space and {xn} be a sequence in X . Then
{xn} converges to x if and only if |d(xn, x)|→ 0 as n →∞.

Lemma 1.7 ([1]). Let (X ,d) be a complex valued metric space and let {xn} be a sequence in X .
Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)|→ 0 as n →∞ where m ∈N.

Further, In 2013, Sintunavarat et al. [7] introduced the notion of a C-Cauchy sequence in
C-complete complex valued metric space as follows:

Definition 1.8 ([7]). Let (X ,d) be a complex valued metric space and {xn} be a sequence in X
and x ∈ X .

(i) If for any c ∈C with 0≺ c, there exists k ∈N such that for all m,n > k, d (xn, xm)≺ c, then
{xn} is called a C-Cauchy sequence in X .

(ii) If every C-Cauchy sequence in X is convergent, then (X ,d) is said to be a C-complete
complex valued metric space.

2. Main Results
Throughout this paper, R denotes a set of real numbers, C+ denotes a set {c ∈C : 04 c} and Γ

denotes the class of all functions µ :C+×C+ → [0,1) which satisfies the condition:

for (xn, yn) in C+×C+,

µ (xn, yn)→ 1=⇒ (xn, yn)→ 0.

In 2013, Sintunavarat et al. [7] proved the following fixed point result:
Let S and T be self mappings of a C-complete complex valued metric space (X ,d). If there

exists mappings α,β :C+ → [0,1) such that for all x, y ∈ X :

(a) α (x)+β(x)< 1,

(b) the mapping γ :C+ → [0,1) defined by γ (x)= α(x)
1−β(x) belongs to Γ,
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(c) d (Sx,T y)4α (d(x, y))d(x, y)+β (d(x, y)) d(x,Sx)d(y,T y)
1+d(x,y) .

Then S and T have a unique common fixed point. Next, we prove our main results.

Theorem 2.1. Let S and T be self mappings of a C-complete complex valued metric space (X ,d).
If there exists mappings α,β,γ :C+×C+ → [0,1) such that for all x, y in X :

(i) α(x, y)+β(x, y)+γ(x, y)< 1, (2.1)

(ii) the mapping µ :C+×C+ → [0,1) defined by µ(x, y) := α(x,y)
1−β(x,y) belongs to Γ, (2.2)

(iii) d (Sx,T y)4α(x, y)d(x, y)+β(x, y) d(y,T y)[1+d(x,Sx)]
1+d(x,y) +γ(x, y) d(y,Sx)[1+d(x,T y)]

1+d(x,y) . (2.3)

Then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X . We construct the sequence {xn} in X such that

x2n+1 = Sx2n, x2n+2 = Tx2n+1, for all n ≥ 0. (2.4)

For n ≥ 0, we get

d(x2n+1, x2n+2)= d(Sx2n,Tx2n+1)

4α (x2n, x2n+1)d(x2n, x2n+1)

+β(x2n, x2n+1)
d (x2n+1,Tx2n+1) [1+d (x2n,Sx2n)]

1+d(x2n, x2n+1)

+γ(x2n, x2n+1)
d (x2n+1,Sx2n) [1+d (x2n,Tx2n+1)]

1+d(x2n, x2n+1)
=α (x2n, x2n+1)d(x2n, x2n+1)

+β(x2n, x2n+1)
d (x2n+1, x2n+2) [1+d (x2n, x2n+1)]

1+d(x2n, x2n+1)

+γ(x2n, x2n+1)
d (x2n+1, x2n+1) [1+d (x2n, x2n+2)]

1+d(x2n, x2n+1)
4α (x2n, x2n+1)d (x2n, x2n+1)+β (x2n, x2n+1)d (x2n+1, x2n+2) ,

which implies that

d (x2n+1, x2n+2)4µ (x2n, x2n+1)d (x2n, x2n+1) (2.5)

where µ(x, y)= α(x,y)
1−β(x,y) .

Similarly, for n ≥ 0, we get

d (x2n+2, x2n+3)4µ (x2n+1, x2n+2)d (x2n+1, x2n+2) . (2.6)

From (2.5) and (2.6), we get

d (xn, xn+1)4µ (xn−1, xn)d (xn−1, xn) for all n ∈N.

Therefore, we get

|d(xn, xn+1)| ≤µ (xn−1, xn) |d(xn−1, xn)| ≤ |d(xn−1, xn)| , (2.7)

for all n ∈N.
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This implies that the sequence {|d(xn−1, xn)|}, n ∈N is monotone non-increasing and bounded
below, therefore,

|d(xn−1, xn)|→ r for some r ≥ 0.

Next, we claim that r = 0. Assume to the contrary that r > 0. Proceeding limit as n →∞, we
have from (2.7), µ (xn−1, xn)→ 1. Since µ ∈Γ, we get (xn−1, xn)→ 0, that is

|d(xn−1, xn)|→ 0, which is a contradiction.

Therefore, we have r = 0, that is

|d(xn−1, xn)|→ 0. (2.8)

Next, we show that {xn} is a C-Cauchy sequence. According to (2.8), it is sufficient to prove that
the subsequence {x2n} is a C-Cauchy sequence. Let, if possible, {x2n} is not a C-Cauchy sequence.
So there is c ∈C with 0≺ c, for which, for all k ∈N, there exists m(k)> n(k)≥ k, such that

d
(
x2n(k), x2m(k)

)
< c. (2.9)

Further, corresponding to n(k), we can choose m(k) in such a way that it is the smallest
integer with m(k)> n(k)≥ k satisfying (2.9). Then, we have

d
(
x2n(k), x2m(k)

)
< c (2.10)

and

d
(
x2n(k), x2m(k)−2

)≺ c. (2.11)

From (2.10) and (2.11), we have

c 4 d
(
x2n(k), x2m(k)

)
4 d

(
x2n(k), x2m(k)−2

)+d
(
x2m(k)−2, x2m(k)−1

)+d
(
x2m(k)−1, x2m(k)

)
≺ c+d

(
x2m(k)−2, x2m(k)−1

)+d
(
x2m(k)−1, x2m(k)

)
.

This implies that

|c| ≤ ∣∣d (
x2n(k), x2m(k)

)∣∣≤ |c|+ ∣∣d (
x2m(k)−2, x2m(k)−1

)∣∣+ ∣∣d (
x2m(k)−1, x2m(k)

)∣∣ .

Letting k →∞, we get∣∣d(x2n(k), x2m(k))
∣∣→|c| . (2.12)

Further, we have

d
(
x2n(k), x2m(k)

)
4 d

(
x2n(k), x2m(k)+1

)+d(x2m(k)+1, x2m(k))

4 d
(
x2n(k), x2m(k)

)+d
(
x2m(k), x2m(k)+1

)+d
(
x2m(k)+1, x2m(k)

)
,

implies that∣∣d(x2n(k), x2m(k))
∣∣≤ ∣∣d(x2n(k), x2m(k))

∣∣+ ∣∣d(x2m(k), x2m(k)+1)
∣∣+ ∣∣d(x2m(k)+1, x2m(k))

∣∣ .

Letting k →∞ and using (2.8) and (2.12), we get∣∣d(x2n(k), x2m(k)+1)
∣∣→|c| . (2.13)

Now

d(x2n(k), x2m(k)+1)4 d(x2n(k), x2n(k)+1)+d(x2n(k)+1, x2m(k)+2)+d(x2m(k)+2, x2m(k)+1)
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= d(x2n(k), x2n(k)+1)+d(Sx2n(k),Tx2m(k)+1)+d(x2m(k)+2, x2m(k)+1)

4 d
(
x2n(k), x2n(k)+1

)+α(
x2n(k), x2m(k)+1

)
d

(
x2n(k), x2m(k)+1

)
+β(

x2n(k), x2m(k)+1
) d

(
x2m(k)+1,Tx2m(k)+1

)
[1+d

(
x2n(k),Sx2n(k)

)
]

1+d
(
x2n(k), x2m(k)+1

)
+γ(

x2n(k), x2m(k)+1
) d

(
x2m(k)+1,Sx2n(k)

)[
1+d

(
x2n(k),Tx2m(k)+1

)]
1+d

(
x2n(k), x2m(k)+1

)
+d

(
x2m(k)+2, x2m(k)+1

)
= d

(
x2n(k), x2n(k)+1

)+α(
x2n(k), x2m(k)+1

)
d

(
x2n(k), x2m(k)+1

)
+β(

x2n(k), x2m(k)+1
) d

(
x2m(k)+1, x2m(k)+2

)
[1+d

(
x2n(k), x2n(k)+1

)
]

1+d
(
x2n(k), x2m(k)+1

)
+γ(

x2n(k), x2m(k)+1
) d

(
x2m(k)+1, x2n(k)+1

)[
1+d

(
x2n(k), x2m(k)+2

)]
1+d

(
x2n(k), x2m(k)+1

)
+ d

(
x2m(k)+2, x2m(k)+1

)
implies that∣∣d(x2n(k), x2m(k)+1)

∣∣≤ ∣∣d(x2n(k), x2n(k)+1)
∣∣+α(

x2n(k), x2m(k)+1
)∣∣d (

x2n(k), x2m(k)+1
)∣∣

+β(
x2n(k), x2m(k)+1

)∣∣∣∣d
(
x2m(k)+1, x2m(k)+2

)
[1+d

(
x2n(k), x2n(k)+1

)
]

1+d
(
x2n(k), x2m(k)+1

) ∣∣∣∣
+γ(

x2n(k), x2m(k)+1
)∣∣∣∣d

(
x2m(k)+1, x2n(k)+1

)[
1+d

(
x2n(k), x2m(k)+2

)]
1+d

(
x2n(k), x2m(k)+1

) ∣∣∣∣
+ ∣∣d (

x2m(k)+2, x2m(k)+1
)∣∣

≤ ∣∣d(x2n(k), x2n(k)+1)
∣∣+α(

x2n(k), x2m(k)+1
)∣∣d (

x2n(k), x2m(k)+1
)∣∣

+
∣∣∣∣d

(
x2m(k)+1, x2m(k)+2

)
[1+d

(
x2n(k), x2n(k)+1

)
]

1+d
(
x2n(k), x2m(k)+1

) ∣∣∣∣
+

∣∣∣∣d
(
x2m(k)+1, x2n(k)+1

)[
1+d

(
x2n(k), x2m(k)+2

)]
1+d

(
x2n(k), x2m(k)+1

) ∣∣∣∣+ ∣∣d (
x2m(k)+2, x2m(k)+1

)∣∣
≤ ∣∣d(x2n(k), x2n(k)+1)

∣∣+ α(x2n(k), x2m(k)+1)
1−β(x2n(k), x2m(k)+1)

∣∣d(x2n(k), x2m(k)+1)
∣∣

+
∣∣∣∣d

(
x2m(k)+1, x2m(k)+2

)
[1+d

(
x2n(k), x2n(k)+1

)
]

1+d
(
x2n(k), x2m(k)+1

) ∣∣∣∣
+

∣∣∣∣d
(
x2m(k)+1, x2n(k)+1

)[
1+d

(
x2n(k), x2m(k)+2

)]
1+d

(
x2n(k), x2m(k)+1

) ∣∣∣∣+ ∣∣d (
x2m(k)+2, x2m(k)+1

)∣∣
≤ ∣∣d(x2n(k), x2n(k)+1)

∣∣+µ(x2n(k), x2m(k)+1)
∣∣d(x2n(k), x2m(k)+1)

∣∣
+

∣∣∣∣d
(
x2m(k)+1, x2m(k)+2

)
[1+d

(
x2n(k), x2n(k)+1

)
]

1+d
(
x2n(k), x2m(k)+1

) ∣∣∣∣
+

∣∣∣∣d
(
x2m(k)+1, x2n(k)+1

)[
1+d

(
x2n(k), x2m(k)+2

)]
1+d

(
x2n(k), x2m(k)+1

) ∣∣∣∣+ ∣∣d (
x2m(k)+2, x2m(k)+1

)∣∣ .
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Letting limit as k →∞, we get

|c| ≤ lim
k→∞

µ(x2n(k), x2m(k)+1) |c| ≤ |c| ,
which implies that lim

k→∞
µ(x2n(k), x2m(k)+1)= 1.

Since µ ∈ Γ, we get
(
x2n(k), x2m(k)

) → 0, that is
∣∣d(x2n(k), x2m(k)+1)

∣∣ → 0, which contradicts
0≺ c. Therefore, we can conclude that {x2n} is C-Cauchy sequence and hence {xn} is a C-Cauchy
sequence in X and X is complete, so there exists a point z in X such that xn → z as n →∞.

Next, we prove that Sz = z. If Sz 6= z then d (Sz, z)> 0.
Now,

d (z,Sz)4 d (z, x2n+2)+d(x2n+2,Sz)

= d (z, x2n+2)+d(Tx2n+1,Sz)

= d (z, x2n+2)+d(Sz,Tx2n+1)

4 d (x2n+2, z)+α (z, x2n+1)d(z, x2n+1)+β(z, x2n+1)
d (x2n+1,Tx2n+1) [1+d(z,Sz)]

1+d(z, x2n+1)

+γ(z, x2n+1)
d (x2n+1, Sz) [1+d(z, Tx2n+1)]

1+d(z, x2n+1)
= d (x2n+2, z)+α (z, x2n+1)d(z, x2n+1)

+β(z, x2n+1)
d (x2n+1, x2n+2) [1+d(z,Sz)]

1+d(z, x2n+1)
+γ(z, x2n+1)

d (x2n+1, Sz) [1+d(z, x2n+2)]
1+d(z, x2n+1)

.

Letting n →∞, we get

d (z,Sz)4 d (z, z)+α (z, z)d (z, z)+β(z, z)
d (z, z) [1+d (z,Sz)]

1+d(z, z)
+γ(z, z)

d (z,Sz) [1+d (z, z)]
1+d(z, z)

that is |d(z,Sz)| ≤ γ (z, z) |d (z,Sz)|, which is a contradiction.
Thus, we get Sz = z. Similarly, we get Tz = z. Therefore z = Sz = Tz, that is, z is a common

fixed point of S and T .
Finally, we show that z is the unique common fixed point of S and T . Assume that there

exists another point ω such that ω= Sω= Tω. From (2.3), we have

d (z,ω)= d(Sz,Tω)

4α (z,ω)d (z,ω)+β(z,ω)
d (ω,Tω) [1+d (z,Sz)]

1+d(z,ω)
+γ(z,ω)

d (ω,Sz) [1+d (z,Tω)]
1+d(z,ω)

=α (z,ω)d (z,ω)+γ(z,ω)
d (ω,Sz) [1+d (z,Tω)]

1+d(z,ω)
4

[
α (z,ω)+γ (z,ω)

]
d (z,ω) ,

that is

|d (z,ω)| ≤ [α (z,ω)+γ (z,ω)] |d (z,ω)| ,
which implies that α (z,ω)+γ (z,ω)≥ 1, which is contradiction and hence z =ω. Therefore, z is a
unique common fixed point of S and T .

Communications in Mathematics and Applications, Vol. 9, No. 4, pp. 581–591, 2018



588 Some Fixed Point Theorems in C-complete Complex Valued Metric Spaces: A.K. Dubey et al.

Corollary 2.2. Let S and T be self mappings of a C-complete complex valued metric space (X ,d)
satisfying the following:

d (Sx,T y)4 ad(x, y)+b
d (y,T y) [1+d (x,Sx)]

1+d(x, y)
+ c

d (y,Sx) [1+d (x,T y)]
1+d(x, y)

(2.14)

for all x, y in X , where a,b, c are non-negative reals with a+ b+ c < 1. Then S and T have a
unique common fixed point.

Proof. By putting α(x, y) = a, β(x, y) = b, γ(x, y) = c in Theorem 2.1, we get the required
result.

Corollary 2.3. Let T be self map of a C-complete complex valued metric space (X ,d). If there
exists mappings α,β,γ :C+×C+ → [0,1) satisfying (2.1), (2.2) and the following:

d (Tx,T y)4α(x, y)d(x, y)+β(x, y)
d (y,T y) [1+d (x,Tx)]

1+d(x, y)
+γ(x, y)

d (y,Tx) [1+d (x,T y)]
1+d(x, y)

(2.15)
for all x, y in X . Then T has a unique fixed point in X .

Proof. By putting S = T in Theorem 2.1, we get the required result.

Corollary 2.4. Let T be self mapping of a C-complete complex valued metric space (X ,d)
satisfying the following:

d (Tx,T y)4 ad(x, y)+b
d (y,T y) [1+d (x,Tx)]

1+d(x, y)
+ c

d (y,Tx) [1+d (x,T y)]
1+d(x, y)

(2.16)

for all x, y in X , where a,b, c are non-negative reals with a+b+ c < 1. Then T has a unique fixed
point in X .

Proof. By putting α(x, y) = a, β(x, y) = b, γ(x, y) = c in Corollary 2.3, we get the required
result.

Theorem 2.5. Let T be self map of a C-complete complex valued metric space (X ,d). If there
exists mappings α,β,γ :C+×C+ → [0,1) satisfying (2.1), (2.2) and the following:

d
(
Tnx,Tn y

)
4α(x, y)d(x, y)+β(x, y)

d (y,Tn y) [1+d (x,Tnx)]
1+d(x, y)

+γ(x, y)
d (y,Tnx) [1+d (x,Tn y)]

1+d(x, y)
(2.17)

for all x, y in X some n ∈N. Then T has a unique fixed point in X .

Proof. From Corollary 2.3, Tn has a fixed point z. But Tn has a fixed point Tz, since
Tn (Tz) = T (Tnz) = Tz. Therefore Tz = z by the uniqueness of a fixed point Tn. Therefore,
z is also a fixed point of T . Since the fixed point of T is also a fixed point of Tn, the fixed point
of T is also unique.
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Corollary 2.6. Let T be self mapping of a C-complete complex valued metric space (X ,d)
satisfying the following:

d
(
Tnx,Tn y

)
4 ad(x, y)+b

d (y,Tn y) [1+d (x,Tnx)]
1+d(x, y)

+ c
d (y,Tnx) [1+d (x,Tn y)]

1+d(x, y)
(2.18)

where a,b, c are non-negative reals with a+b+ c < 1. Then T has a unique fixed point in X .

Proof. By putting α(x, y) = a, β(x, y) = b, γ(x, y) = c in Theorem 2.5, we get the required
result.

Theorem 2.7. Let S and T be self mappings of a C-complete complex valued metric space (X ,d).
If there exists mapping α,β :C+ → [0,1) such that for all x, y in X :

(i) α (x)+β (x)< 1, (2.19)

(ii) the mapping µ :C+ → [0,1) defined by µ (x)= α(x)
1−β(x) belongs to Γ, (2.20)

(iii) d (Sx,T y)4α (d(x, y))d(x, y)+β (d(x, y)) d(y,T y)[1+d(x,Sx)]
1+d(x,y) . (2.21)

Then S and T have a unique common fixed point in X .

Proof. Define α,β,γ :C+×C+ → [0,1) by

α(x, y)=α (d(x, y)) , β(x, y)=β (d(x, y)) , γ(x, y)= 0 for all x, y in X .

Now using Theorem 2.1, we get the required result.

Corollary 2.8. Let S and T be self mappings of a C-complete complex valued metric space (X ,d)
satisfying the following:

d (Sx,T y)4 ad(x, y)+b
d (y,T y) [1+d (x,Sx)]

1+d(x, y)
, (2.22)

for all x, y in X , where a,b are non-negative reals with a+b < 1. Then S and T have a unique
common fixed point.

Proof. By putting α (x)= a, β (x)= b in Theorem 2.7, we get the required result.

Corollary 2.9. Let T be a self map of a C-complete complex valued metric space (X ,d). If there
exists mappings α,β :C+ → [0,1) satisfying (2.19), (2.20) and the following:

d (Tx,T y)4α (d(x, y))d(x, y)+β (d(x, y))
d (y,T y) [1+d (x,Tx)]

1+d(x, y)
, (2.23)

for all x, y in X . Then T has a unique fixed point in X .

Proof. By putting S = T in Theorem 2.7, we get the required result.

Corollary 2.10. Let T be self mapping of a C-complete complex valued metric space (X ,d)
satisfying the following:

d (Tx,T y)4 ad(x, y)+b
d (y,T y) [1+d (x,Tx)]

1+d(x, y)
, (2.24)
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for all x, y in X , where a,b are non-negative reals with a+ b < 1. Then T has a unique fixed
point in X .

Proof. By putting α (x)= a, β (x)= b in Corollary 2.9, we get the required result.

Theorem 2.11. Let T be self map of a C-complete complex valued metric space (X ,d). If there
exists mapping α,β :C+ → [0,1) satisfying (2.19),(2.20) and the following:

d
(
Tnx,Tn y

)
4α (d(x, y))d(x, y)+β (d(x, y))

d (y,Tn y) [1+d (x,Tnx)]
1+d(x, y)

, (2.25)

for all x, y in X and some n ∈N. Then T has a unique fixed point in X .

Proof. From Corollary 2.9, Tn has a fixed point Z. Since Tn (Tz)= T (Tnz)= Tz, we get Tz is a
fixed point of Tn. Therefore, Tz = Z by the uniqueness of a fixed point Tn. Therefore, z is also a
fixed point of T . Since the fixed point of T is also a fixed point of Tn, we get that fixed point of
T is also unique.

Corollary 2.12. Let T be self mapping of a C-complete complex valued metric space (X ,d)
satisfying the following:

d
(
Tnx,Tn y

)
4 ad(x, y)+b

d (y,Tn y) [1+d (x,Tnx)]
1+d (x, y)

, (2.26)

for all x, y in X and some n ∈N, where a,b are non-negative reals with a+b < 1. Then T has a
unique fixed point in X .

Proof. By putting α (x)= a, β (x)= b in Theorem 2.11, we get the required result.

3. Conclusion
The aim of this paper is to investigate common fixed point theorems for a pair of mappings
satisfying rational inequality in the framework of C-complex valued metric spaces. The future
scope of our results, to obtain the existence and uniqueness of a common solution of the system
of Urysohn integral equations. The integral equation plays very significant and important role
in mathematical analysis and has various applications in real world problems.
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